Cho tam giác ABC cân tại A có AH vuông góc BC tại H
a) Chứng minh: tam giác ABH=ACH
b) Gọi D là trung điểm đoạn CH, từ D kẻ đường thẳng vuông góc BC cắt cạnh AC tại E. Chứng minh: Tam giác EDH= tam giác EDC
c) Chứng minh E là trung điểm đoạn thẳng AC
d) Giả sử AH=15cm , BH=9cm và G là trọng tâm của tam giác ABC. Tính độ dài đoạn thẳng AH và AG.
Quảng cáo
1 câu trả lời 510
a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90
AB = AC do tg ABC cân tại A (gt)
^ABC = ^ACB do tg ABC ...
=> tg AHB = tg AHC (ch-gn)
b, tg ABC cân tại A (Gt) mà có AH là đường cao (1)
=> AH đồng thời là đường trung tuyến
=> H là trung điểm của BC
=> BH = 1/2BC = 6 cm
tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)
AB = 10 (gt)
=> AH = 8 do AH > 0
c, (1) => AH đồng thời là pg của ^BAC (đl)
=> ^CAH = ^BAH (đn)
có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)
=> ^BAH = ^AHE
=> tg AHE cân tại E (dh)
Câu d ko bt làm nha
mong cho 4* và 1 tym ạ cám ơn chúc làm bài tốt !!!
> <
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK120962
-
Đã trả lời bởi chuyên gia
81713 -
Đã trả lời bởi chuyên gia
59651 -
Đã trả lời bởi chuyên gia
39669
