Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm

Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm

556
  Tải tài liệu

Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm

A. Phương pháp giải

Cho đường tròn ( C) có tâm I( a; b); bán kính R và điểm M( x0; y0) :

+ Lập phương trình tiếp tuyến (d) của ( C ) tại điểm M:

Do (d) là tiếp tuyến của đường tròn tại M nên d vuông góc IM

⇒ Đường thẳng ( d) : Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ Phương trình đường thẳng d.

+ Lập phương trình tiếp tuyến (d) của ( C) đi qua M :

- Đường thẳng ( d) : Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ (d): A(x - x0) + B( y - y0) = 0.

- Do đường thẳng d là tiếp tuyến của đường tròn ( C) nên d( I; d) = R

⇒ Một phương trình hai ẩn A; B. Giải phương trình ta được A = kB.

- Chọn A= ... ⇒ B=...⇒ Phương trình đường thẳng d.

Hỏi đáp VietJack

B. Ví dụ minh họa

Ví dụ 1. Cho đường tròn ( C): (x-1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) tại điểm A(3; -4) .

A. d: x + y + 1 = 0    B. d: x - 2y - 11 = 0

C. d: x - y - 7 = 0    D. d: x - y + 7 = 0

Lời giải

+ Đường tròn ( C) có tâm I( 1; -2) .

+ Do đường thẳng d tiếp xúc với đường tròn tại điểm A(3; -4) nên đường thẳng d vuông góc với đường thẳng IA.

+ Phương trình đường thẳng (d): Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ phương trình (d) là: 2( x - 3) – 2( y + 4) = 0

⇔ (d) : 2x - 2y - 14 = 0 hay x - y - 7 = 0

Chọn C.

Ví dụ 2 : Cho đường tròn (x - 3)2 + (y + 1)2 = 5 . Phương trình tiếp tuyến của ( C) song song với đường thẳng d : 2x + y + 7 = 0 là

A. 2x + y = 0; 2x + y - 10 = 0    B. 2x + y + 1 = 0 ; 2x + y - 1 = 0

C. 2x - y + 1 = 0; 2x + y - 10 = 0    D. 2x + y = 0; x + 2y - 10 = 0

Hướng dẫn:

Do tiếp tuyến cần tìm song song với đường thẳng d: 2x + y + 7 = 0 nên

phương trình tiếp tuyến có dạng ∆: 2x + y + m = 0 với m ≠ 7 .

Đường tròn ( C) có tâm I( 3; -1) và bán kính R = √5

Đường thẳng tiếp xúc với đường tròn ( C) khi :

d( I , ∆) = R ⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = √5 ⇔ |5 + m| = 5

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

Vậy ∆1 : 2x + y = 0 , ∆2 : 2x + y - 10 = 0

Chọn A.

Ví dụ 3. Viết phương trình tiếp tuyến ∆ của đường tròn ( C): x2 + y2 - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B( 4; 6) .

A. x - 4 = 0 hoặc 3x + 4y - 36 = 0    B. x - 4 = 0 hoặc y - 6 = 0.

C. y - 6 = 0 hoặc 3x + 4y - 36 = 0    D. x - 4 = 0 hoặc 3x - 4y + 12 = 0

Lời giải

+ Đường tròn (C) có tâm I( 2; 2) và bán kính R = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 2

+ Tiếp tuyến ∆: Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ Phương trình ∆: a(x - 4) + b(y - 6) = 0 hay ax + by - 4a - 6b = 0 (*)

+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 2 ⇔|- 2a - 4b| = 2Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇔ |a + 2b| = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 ⇔ a2 + 4ab + 4b2 = a2 + b2

⇔ 4ab + 3b2 = 0 ⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

+ Nếu b = 0; chọn a = 1 thay vào (*) ta được ∆: x - 4 = 0.

+ Nếu 4a = - 3b ta chọn a = 3 thì b = -4 thay vào ( *) ta được: 3x - 4y + 12 = 0

Vậy có hai tiếp tuyến thỏa mãn là x - 4 = 0 và 3x - 4y + 12 = 0 .

Chọn D.

Ví dụ 4. Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:

A. d: -y + 1 = 0    B. d: 4x + 3y + 14 = 0

C. d: 3x - 4y - 2 = 0    D. d: 4x + 3y - 11 = 0

Lời giải

+ Đường tròn ( C) có tâm I(-2; -2) và bán kính R= 5.

+ Do đường thẳng d tiếp xúc với đường tròn taị điểm M nên hai đường thẳng d và IM vuông góc với nhau.

+ Đường thẳng d: Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒Phương trình (d) : 4( x - 2) + 3( y - 1) = 0 hay 4x + 3y - 11 = 0

Chọn D.

Ví dụ 5: Cho đường tròn ( C) có tâm I(1; 3), bán kính R= √52. Lập phương trình tiếp tuyến của đường tròn tại điểm M biết điểm M thuộc đường thẳng d: Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 và tọa độ M nguyên?

A. x + 2y + 3 = 0    B. 2x + 5y + 21 = 0

C. 2x - 3y - 19 = 0    D. Đáp án khác

Lời giải

+ Do điểm M thuộc đường thẳng d nên tọa độ M(3 + 2t; 1 - 4t).

+ Do điểm M thuộc đường tròn nên IM = R

⇔ IM2 = R2 ⇔ ( 2 + 2t)2 + ( 2 + 4t)2 = 52

⇔ 4t2 + 8t + 4 + 16t2 + 16t + 4 = 52

⇔ 20t2 + 24t – 44 = 0 ⇔ t = 1 hoặc t = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 ( loại) .

+ Với t = 1 thì tọa độ M(5; -3) .

⇒ Phương trình tiếp tuyến của đường tròn tại điểm M (5; -3):

(∆) : Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ Phương trình tiếp tuyến : 2( x - 5) – 3(y + 3) = 0 hay 2x - 3y - 19 = 0

Chọn C.

Ví dụ 6. Cho đường tròn (C): (x + 1)2 + (y - 1)2 = 25 và điểm M(9; -4) . Gọi ∆ là tiếp tuyến của ( C) , biết ∆ đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6; 5) đến ∆ bằng:

A. 2    B. 3    C. 4    D. 5

Lời giải

+ Đường tròn (C) có tâm I(-1; 1)và bán kính R= 5.

+ Tiếp tuyến ∆: Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ Phương trình ∆: a(x - 9) + b(y + 4) = 0 hay ax + by – 9a + 4b = 0 (*)

+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 5 ⇔ |-10a + 5b| = 5Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇔ |-2a + b| = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇔ 4a2 - 4ab + b2 = a2 + b2 ⇔ 3a2 - 4ab = 0

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

+ Nếu a = 0 chọn b = 1 thay vào (*) ta được: y + 4 = 0 ( loại) vì tiếp tuyến không song song với các trục tọa độ.

+ Nếu 3a = 4b, chọn a = 4 thì b = 3 ta được ∆: 4x + 3y - 24 = 0

⇒ Khoảng cách từ P(6;5) đến đường thẳng ∆ là:

d(P, ∆) = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 3

Chọn B.

Ví dụ 7. Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn
(C): x2 + y2 - 2x + 4y - 11 = 0?

A. 0.    B. 2.    C. 1.    D. 3.

Lời giải

Đường tròn (C) có tâm I(1; -2) và bán kính R = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 4.

Độ dài OI = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = √5

⇒ Điểm O nằm trong đường tròn nên không có tiếp tuyến nào của đường tròn kẻ từ O.

Chọn A.

Ví dụ 8. Cho đường tròn (C): (x-3)2 + (y + 3)2 = 1. Qua điểm M(4; -3) có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn ( C) ?

A. 0.    B. 1.    C. 2.    D. Vô số.

Lời giải

Thay tọa độ điểm M vào phương trình đường tròn( C) ta được :

( 4 - 3)2 + (-3 + 3)2 = 1

⇒ Điểm M thuộc (C).

⇒ có đúng 1 tiếp tuyến của đường tròn kẻ từ M.

Chọn B.

Ví dụ 9. Có bao nhiêu đường thẳng đi qua điểm N(-2; 0) tiếp xúc với đường tròn
(C): (x - 2)2 + (y + 3)2 = 4?

A. 0.    B. 1.    C. 2.    D. Vô số.

Lời giải

Đường tròn ( C) có tâm I(2; -3) và bán kính R = 2.

Độ dài IN = Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 5 > R

⇒ Điểm N nằm ngoài đường tròn ( C) nên qua điểm N kẻ được hai tiếp tuyến đến đường tròn (C).

Chọn C.

Ví dụ 10. Viết phương trình tiếp tuyến ∆ của đường tròn ( C): (x - 1)2 + (y + 2)2 = 8, biết tiếp tuyến đi qua điểm A( 5; -2).

A. x - 5 = 0 .    B. x + y - 3 = 0 hoặc x - y 7 = 0.

C. x- 5= 0 hoặc x + y - 3 = 0 .    D. y + 2 = 0 hoặc x - y - 7 = 0 .

Lời giải

+ Đường tròn (C) có tâm I(1; -2) và bán kính R = 2√2

+ Tiếp tuyến ∆: Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇒ Phương trình ∆: a( x - 5) + b(y + 2) = 0 hay ax + by - 5a + 2b = 0.

+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10 = 2√2 ⇔ |- 4a| = 2√2.Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

⇔ 16a2 = 8( a2 + b2 ) ⇔ 8a2 = 8b2

⇔ Viết phương trình tiếp tuyến của đường tròn tại 1 điểm, đi qua 1 điểm - Toán lớp 10

+ Nếu a = b; ta chọn a = 1 ⇒ b = 1. Khi đó phương trình tiếp tuyến ∆: x + y - 3 = 0

+ Nếu a = - b; chọn a = 1 thì b = - 1. Khi đó phương trình tiếp tuyến ∆: x - y - 7 = 0.

Vậy có hai tiếp tuyến thỏa mãn là x + y - 3 = 0 và x - y - 7 = 0

Chọn B.

Ví dụ 11: Cho đường tròn (C) : (x - 3)2 + (y - 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A( 4; 4) là

A. x - 3y + 8 = 0.    B. x + 3y – 16 = 0.    C. 2x - 3y + 5 = 0 .    D. x + 3y - 16 = 0.

Hướng dẫn giải

Đường tròn (C) có tâm I( 3;1). Gọi d là tiếp tuyến của đường tròn (C) tại điểm A; khi đó d và IA vuông góc với nhau.

⇒ IA = (1; 3) là vectơ pháp tuyến của d.

Suy ra phương trình d: 1( x - 4) + 3( y - 4 ) = 0

Hay x + 3y - 16 = 0.

Chọn D.

Bài viết liên quan

556
  Tải tài liệu