Cách xác định góc giữa hai đường thẳng cực hay
Cách xác định góc giữa hai đường thẳng cực hay Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách xác định góc giữa hai đường thẳng cực hay
Cách xác định góc giữa hai đường thẳng cực hay
A. Phương pháp giải
Để xác định góc giữa hai đường thẳng d và d’ ta có hai cách sau:
+ Cách 1: Gọi n→(x; y) và n'→( x'; y') lần lượt là VTPT của hai đường thẳng d và d’. Gọi α là góc giữa hai đường thẳng. Ta có:
Cosα = |cos( n→; n'→ ) | =
+ Cách 2: Gọi k1 và k2 lần lượt là hệ số góc của hai đường thẳng. Gọi α là góc giữa hai đường thẳng. Ta có:
tgα =
B. Ví dụ minh họa
Ví dụ 1: Cho đường thẳng (a): và đường thẳng ( b): x + my - 4 = 0. Hỏi có bao nhiêu giá trị của m để góc giữa hai đường thẳng trên bằng 600.
A. 1 B. 2 C. 3 D. 4
Lời giải
+ Đường thẳng (a) có VTCP u→( m, 1) nên có VTPT n→( 1; -m) .
+ Đường thẳng (b) có VTPT n'→( 1; m).
+ Để góc giữa hai đường thẳng trên bằng 600 thì:
Cos600 =
⇔ 1 + m2 = 2.|1 - m2| (*)
+ Nếu -1 < m < 1 thì 1 - m2 > 0. Từ (*) suy ra: 1 + m2 = 2 (1 - m2)
⇔ 1+ m2 = 2- 2m2 ⇔ 3m2 = 1
⇔ m2 = ⇔ m= ± ( thỏa mãn điều kiện) .
+ Nếu m ≥ 1 hoặc m ≤ -1 thì 1- m2 ≤ 0. Từ (*) suy ra:
1 + m2 = 2( m2 - 1) ⇔ 1 + m2 = 2m2 - 2
⇔ m2 = 3 ⇔ m = ±√3.
Vậy có 4 giá trị của m thỏa mãn.
Chọn D.
Ví dụ 2: Tìm côsin góc giữa 2 đường thẳng ∆1 : 10x + 5y - 1 = 0 và ∆2 :
A. B. C. D.
Hướng dẫn:
Vectơ pháp tuyến của ∆1; ∆2 lần lượt là n1→ = (2; 1); n2→ = (1; 1)
cos(∆1; ∆2) = |cos( n1→, n2→ ) | =
Chọn B.
Ví dụ 3. Tính góc giữa hai đường thẳng: 3x + y - 8 = 0 và 4x – 2y + 10 = 0 .
A. 300 B. 600 C. 900 D. 450
Lời giải
Đường thẳng: 3x + y – 8 = 0 có VTPT n1→(3; 1)
Đường thẳng: 4x - 2y + 10= 0 có VTPT n2→(4; -2)
cos(d1, d2) = |cos( n1→, n2→ ) | = ⇒ (d1, d2) = 450
Chọn D.
Ví dụ 4: Tìm côsin góc giữa 2 đường thẳng d1: x + 3y - 9 = 0 và d2:
A. B. C. D. tất cả sai
Lời giải
Vectơ pháp tuyến của d1; d2 lần lượt là n1→( 1; 3); n2→(1; -1).
Cos( d1; d2) = |cos( n1→, n2→ ) | =
Chọn C.
Ví dụ 5 : Tính góc giữa hai đường thẳng: (a): = 1 và (b):
A. 00 B. 450 C. 600 D. 900
Hướng dẫn giải
Đường thẳng (a) ⇔ 4x + 2y - 8 = 0 có VTPT n→( 4; 2)
Đường thẳng (b) có VTCP u→( 2; -4) nên VTPT n'→( 4; 2)
⇒ cos(a; b) = = 1
⇒ Góc giữa hai đường thẳng đã cho là 00.
Chọn A.
Ví dụ 6: Cho đường thẳng (a): x + y - 10 = 0 và đường thẳng (b): 2x + my + 99 = 0. Tìm m để góc giữa hai đường thẳng trên bằng 450.
A. m = -1 B. m = 0 C. m = 1 D. m = 2
Lời giải
Đường thẳng (a) có VTPT n→( 1; 1)
Đường thẳng (b) có VTPT n'→( 2 ;m)
Để góc giữa hai đường thẳng a và b bằng 450 thì
Cos450 =
⇔ |2 + m| =
⇔ 4 + 4m + m2 = 4 + m2
⇔ 4m = 0 ⇔ m = 0
Chọn B
Ví dụ 7: Cho đường thẳng (a): y = 2x + 3 và (b): y = -x + 6. Tính tan của góc tạo bởi hai đường thẳng (a) và (b)?
A. 1 B. 2 C. 3 D. 4
Lời giải
Gọi α là góc tạo bởi hai đường thẳng (a) và (b).
Đường thẳng (a) có hệ số góc k1 = 2 và đường thẳng (b) có hệ số góc k2 = -1.
⇒ Tan của góc tạo bởi hai đường thẳng trên là:
Tgα = = 3
Chọn C.
Ví dụ 8: Cho hai đường thẳng (d1): y = - 3x + 8 và (d2) : x + y - 10 = 0. Tính tan của góc tạo bởi hai đường thẳng d1 và d2?
A. B. 1 C. 3 D.
Lời giải
Đường thẳng (d1) có hệ số góc k1 = - 3.
Đường thẳng (d2) ⇔ y = -x + 10 có hệ số góc k2 = -1.
⇒ tan của góc tạo bởi hai đường thẳng trên là:
tgα =
Chọn A.
Ví dụ 9: Tính góc giữa hai đường thẳng (a): 3x + y - 2 = 0 và (b): 2x - y + 39 = 0.
A. 300 B. 600 C. 900 D. 450
Hướng dẫn giải
Đường thẳng: 3x + y - 2 = 0có VTPT n→( 3; 1).
Đường thẳng: 2x - y + 39 = 0 có VTPT n→( 2; -1)
cos(a; b) = |cos( na→; nb→ ) |
=
⇒ ( a; b) = 450
Chọn D.
Bài viết liên quan
- Vị trí tương đối của 2 điểm với đường thẳng: cùng phía, khác phía
- Viết phương trình đường tròn C’ đối xứng với đường tròn C qua 1 điểm, 1 đường thẳng
- Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc
- Viết phương trình đường phân giác của góc tạo bởi hai đường thẳng
- Cách nhận dạng, xác định phương trình đường tròn: tìm tâm, bán kính