Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay
 

551
  Tải tài liệu

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay

A. Phương pháp giải

Bài toán: Cho đường thẳng d: ax + by + c = 0 và điểm A. Tìm điểm H là hình chiếu của A trên đường thẳng d:

+ Bước 1: Gọi tọa độ điểm H(xH; yH).

Vì điểm H thuộc d nên : axH + byH + c = 0 (1).

+ Bước 2:Do AH vuông góc d nên AH→ là VTPT của d.

⇒ AH→(xH - xA; yH - yA) và n→(a; b) cùng phương

⇒ b(xH - xA) - a(yH - yA )= 0 (2)

+ Bước 3: giải hệ(1) và (2) ta được tọa độ điểm H.

B. Ví dụ minh họa

Ví dụ 1. Cho tam giác OBC có O(0; 0) ; B( 0; 6) và C(-6; 0). Gọi G là trọng tâm tam giác OBC. Tìm điểm G’ đối xứng với G qua BC?

A. G’( - Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ;- Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 )    B. G’( -1; 1)    C. G’(-2; 2)    D. G’(-4; 4)

Lời giải

+ ta có: OB→(0; 6); OC→( -6; 0)

⇒ OB= 6; OC= 6 và OB→.OC→ = 0.(-6) + 6.0 = 0

⇒ OB vuông góc OC và OB = OC

⇒ Tam giác OBC vuông góc tại O.

+ Do G là trọng tâm tam giác OBC nên tọa độ điểm G:

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇒ G( -2; 2)

+ Gọi M là trung điểm của BC. Do tam giác OBC là vuông cân tại O nên đường trung tuyến OM đồng thời là đường cao nên OM vuông góc BC tại M.

⇒ G’ đối xứng với G qua BC nên M là trung điểm của GG’.

- M là trung điểm BC nên tọa độ điểm M: Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇒ M( - 3; 3)

- M là trung điểm GG’nên tọa độ điểm G’ là:

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇒ G’ ( -4; 4)

⇒ Vậy tọa độ điểm G’( - 4; 4)

Chọn D.

 

Ví dụ 2: Cho đường thẳng d: 2x - y + 3 = 0 và điểm M(0; 4). Tìm hình chiếu của M trên d?

A. H(- Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    B. H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    C. H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    D. (4; -1)

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên 2a - b + 3 = 0 (1)

+ Ta có: MH→(a; b - 4).

Đường thẳng MH vuông góc d nên MH→ cùng phương nd(2; -1)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ -a = 2b - 8 hay a + 2b = 8 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 )

Chọn C.

Ví dụ 3: Cho đường thẳng d: x + 2y + 4 = 0 và điểm M(1; 3). Gọi M’(x; y) là điểm đối xứng với M qua d. Tính 2x - y?

A. 1    B. 2    C. 0    D. -1

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a + 2b + 4 = 0 (1)

+ Ta có: MH→(a - 1; b - 3).

Đường thẳng MH vuông góc d nên MH→ cùng phương nd(1 ; 2)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ 2a - 2 = b - 3 hay 2a - b = -1 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(-1,2; -1,4).

+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

Vậy M’(-3,4; - 5,8) ⇒ 2x - y = -1

Chọn D.

Ví dụ 4: Cho đường thẳng d: 2x - y = 0 và điểm M(1 ;0). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tính 4x + 3y?

A. 1    B. 2    C. 0    D. -1

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên 2a - b = 0 (1)

+ Ta có: MH→(a-1; b).

Đường thẳng MH vuông góc d nên MH→ cùng phương nd(2; -1)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ -a + 1 = 2b hay a + 2b = 1 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(0,2; 0,4).

+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

Vậy M’(-0,6; 0,8) ⇒ 4x + 3y = 0

Chọn C.

Ví dụ 5: Cho đường thẳng d: 2x - 3y + 5 = 0 và điểm A(-1; 1). Tìm hình chiếu của điểm A trên d?

A. (2; -1)    B. (-2; -1)    C. (-1; 1)    D. (-1; 3)

Lời giải

Thay tọa độ điểm A vào phương trình đường thẳng d ta được :

2.(-1) - 3.1 + 5 = 0

⇒ Điểm A thuộc đường thẳng d nên hình chiếu của điểm A trên đường thẳng d là chính nó.

Chọn C.

Ví dụ 6: Cho đường thẳng (d): x + y - 3 = 0 và điểm M(2; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?

A. x + y - 4 = 0    B. x + y - 1 = 0    C. x - y - 1 = 0    D. x - y + 3 = 0

Lời giải

+ Đường thẳng (d) có VTPT n→( 1; 1).

+ Vecto MA→( x - 2; y - 1).

Do M là hình chiếu của A trên d nên MA vuông góc d

⇒ Hai vecto MA→ và nd cùng phương

⇔ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ x - 2 = y - 1 hay x - y - 1 = 0

Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng:
∆: x - y - 1 = 0

Chọn C.

Ví dụ 7: Cho đường thẳng d: Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 = 1 và điểm M(0; 3). Tìm hình chiếu của M trên d?

A. (1; 3)    B. (0,4; 2,8)    C. ( 2,3; -1)    D. (4; -1,2)

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 = 1 hay 2a - b = -2 (1)

+ Ta có: MH→(a; b - 3). Phương trình tổng quát (d): 2x - y + 2 = 0

Đường thẳng MH vuông góc d nên MH→ cùng phương nd(2; -1)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ -a = 2b - 6 hay a + 2b = 6 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(0,4; 2,8)

Chọn B.

Ví dụ 8: Cho đường thẳng d: x - y + 3 = 0 và điểm M(1; 1). Tìm hình chiếu của M trên d?

A. H(- Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    B. H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    C. H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).    D. (4; -1)

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a- b+3= 0 (1)

+ Ta có: MH→(a - 1; b - 1).

Đường thẳng MH vuông góc d nên MH→ cùng phương nd(1; -1)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ -a + 1 = b - 1 hay a + b = 2 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ; Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ).

Chọn C.

Ví dụ 9: Cho đường thẳng d: 4x + y - 5 = 0 và điểm A(1; 1). Tìm hình chiếu của điểm A trên d?

A. (2; -1)    B. (-2; -1)    C. (1; 1)    D. (-1; 3)

Lời giải

Thay tọa độ điểm A vào phương trình đường thẳng d ta được :

4.1 + 1 - 5 = 0

⇒ Điểm A thuộc đường thẳng d nên hình chiếu của điểm A trên đường thẳng d là chính nó.

Chọn C.

Ví dụ 10: Cho đường thẳng (d): 2x + 3y - 3 = 0 và điểm M(0; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?

A. 2x + 3y - 4 = 0    B. 3x - 2y + 2 = 0    C. 3x - 2y - 1 = 0    D. 2x - 3y + 3 = 0

Lời giải

+ Đường thẳng (d) có VTPT n→(2; 3).

+ Vecto MA→( x; y - 1).

Do M là hình chiếu của A trên d nên MA vuông góc d

⇒ Hai vecto MA→ và n→ cùng phương

⇔ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ 3x = 2y - 2 hay 3x - 2y + 2 = 0

Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng: ∆: 3x - 2y + 2 = 0

Chọn B.

Ví dụ 11: Cho đường thẳng d: x - y = 0 và điểm M(1; 3). Tìm hình chiếu của M trên d?

A. (1; 3)    B. (2; 2)    C. ( 3; -1)    D. (4; -1)

Lời giải

+ Gọi H(a;b) là hình chiếu của M trên d.

+ Do H thuộc d nên a - b = 0 (1)

+ Ta có: MH→(a - 1; b - 3).

Đường thẳng MH vuông góc d nên MH→ cùng phương nd (1; -1)

⇒ Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10 ⇔ -a + 1= b - 3 hay a + b = 4 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm hình chiếu vuông góc của điểm lên đường thẳng cực hay - Toán lớp 10

⇒ Tọa độ điểm H(2; 2).

Chọn B

Bài viết liên quan

551
  Tải tài liệu