Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết

Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết
 

622
  Tải tài liệu

Cách giải phương trình chứa ẩn dưới dấu căn cực hay, chi tiết

Lý thuyết & Phương pháp giải

Để giải phương trình chứa ẩn dưới dấu căn ta tìm cách để khử dấu căn, bằng cách:

– Nâng luỹ thừa hai vế.

– Phân tích thành tích.

– Đặt ẩn phụ.

Các dạng phương trình sau ta có thể giải bằng cách thực hiện phép biến đổi tương đương:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình có dạng a.f(x) + b.√(f(x) ) + c = 0 ta đặt √(f(x)) = t

Ngoài ra ta còn có phương pháp phân tích thành tích bằng cách nhân liên hợp

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với A, B không đồng thời bằng không

Ví dụ minh họa

Bài 1: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

Đặt t = √(3x2 - 2x + 2), điều kiện t ≥ 0. Khi đó √(3x2 - 2x + 9) = √(t2 + 7)

Phương trình trở thành √(t2 + 7) + t = 7

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có hai nghiệm x = (1 ± √22)/3

Bài 2: Giải phương trình sauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

Phương trình tương đương với phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 0 và x = 1

Bài 3: Giải phương trình sau √(2x-1) + x2 - 3x + 1 = 0

Hướng dẫn:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 1 và x = 2 - √2

Bài 4: Giải phương trình sau x2 + √(x2 + 11) = 31

Hướng dẫn:

Đặt t = √(x2 + 11), t ≥ 0. Khi đó phương trình đã cho trở thành:

t2 + t - 42 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì t ≥ 0 ⇒ t = 6, thay vào ta có √(x2 + 11) = 6

x2 + 11 = 36 ⇔ x = ±5

Vậy phương trình có nghiệm là x = ±5

Bài 5: Giải phương trình sau √(2x-3) = x-3

Hướng dẫn:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài viết liên quan

622
  Tải tài liệu