Cách giải phương trình chứa dấu giá trị tuyệt đối cực hay, chi tiết

Cách giải phương trình chứa dấu giá trị tuyệt đối cực hay, chi tiết Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải phương trình chứa dấu giá trị tuyệt đối cực hay, chi tiết
 

752
  Tải tài liệu

Cách giải phương trình chứa dấu giá trị tuyệt đối cực hay, chi tiết

Lý thuyết & Phương pháp giải

Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối(GTTĐ) ta tìm cách để khử dấu giá trị tuyệt đối, bằng cách:

– Dùng định nghĩa hoặc tính chất của GTTĐ.

– Bình phương hai vế.

– Đặt ẩn phụ.

Phương trình dạng |f(x)|=|g(x)| ta có thể giải bằng cách biến đổi tương đương như sau:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

hoặc |f(x)| = |g(x)|⇔ f2(x) = g2(x)

- Đối với phương trình dạng |f(x)| = g(x)(*) ta có thể biến đổi tương đương như sau:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

HoặcToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ví dụ minh họa

Bài 1: Phương trình (x+1)2 - 3|x+1| + 2 = 0 có bao nhiêu nghiệm?

Hướng dẫn:

Đặt t = |x + 1|, t ≥ 0

Phương trình trở thành t2 - 3t + 2 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với t = 1 ta có |x + 1| = 1 ⇔ x + 1 = ±1 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với t = 2 ta có |x + 1| = 2 ⇔ x + 1 = ±2 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = -3, x = -2, x = 0 và x = 1

Bài 2: Giải phương trình |x3 - 1| = |x2 - 3x + 2|

Hướng dẫn:

Hai về không âm bình phương hai vế ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy tập nghiệm của phương trình đã cho là S = {1; -1 + √2; -1 - √2}

Bài 3: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ 1

Phương trình tương đươngToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đặt t = |x - 1 - 3/(x-1)|

Suy ra

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Phương trình trở thành t2 + 6 = 7t ⇔ t2 - 7t + 6 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với t = 1 ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với t = 6 ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bài 4: Giải phương trình |2x - 5| + |2x2 - 7x + 5| = 0

Hướng dẫn:

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Dấu ''='' xảy ra khi và chỉ khi

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy tập nghiệm của phương trình là S = {5/2}

Bài 5: Giải phương trình |3x - 2| = x2 + 2x + 3

Hướng dẫn:

Ta có:Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

* Nếu x ≥ 2/3 ⇒ PT ⇔ 3x - 2 = x2 + 2x + 3 ⇔ x2 - x + 5 = 0 pt vô nghiệm

* Nếu x < 2/3 ⇒ PT ⇔ -3x + 2 = x2 + 2x + 3 ⇔ x2 + 5x + 1 = 0

⇔ x = (-5 ± √21)/2 hai nghiệm này đều thỏa mãn x < 2/3

Vậy nghiệm của phương trình đã cho là x = (-5 ± √21)/2

Bài viết liên quan

752
  Tải tài liệu