Cách giải phương trình chứa ẩn ở mẫu cực hay, chi tiết

Cách giải phương trình chứa ẩn ở mẫu cực hay, chi tiết Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải phương trình chứa ẩn ở mẫu cực hay, chi tiết
 

687
  Tải tài liệu

Cách giải phương trình chứa ẩn ở mẫu cực hay, chi tiết

Lý thuyết & Phương pháp giải

Để giải phương trình chứa ẩn ở mẫu ta thường

- Quy đồng mẫu số (chú ý cần đặt điều kiện mẫu số khác không)

- Đặt ẩn phụ

Ví dụ minh họa

Bài 1: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ∉ {-2; -3/2; -1; -1/2}

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = (-5 ± √3)/4 và x = -5/2

Bài 2: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -3 và x ≠ 2

Phương trình tương đương với (2 - x)(x + 3) - 2(x + 3) = 10(2 - x) - 50

⇔ x2 - 7x - 30 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đối chiếu với điều kiện ta có nghiệm của phương trình là x = 10

Bài 3: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -1 và x ≠ 1/2

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇔ x = 5 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = 5

Bài 4: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x≠±2 và x≠-1

Phương trình tương đương với

(x+1)2(x-2) + (x-1)(x+1)(x+2) = (2x+1)(x-2)(x+2)

⇔ (x2 + 2x + 1)(x - 2) + (x2 - 1)(x + 2) = (2x + 1)(x2 - 4)

⇔ x3 - 2x2 + 2x2 - 4x + x - 2 + x3 + 2x2 - x - 2 = 2x3 - 8x + x2 - 4

⇔ x2 + 4x = 0 ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án(thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 và x = 0

Bài 5: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -2/3 và x ≠ 2

Phương trình tương đương với (2x+1)(x-2) = (x+1)(3x+2)

⇔ 2x2 - 4x + x - 2 = 3x2 + 2x + 3x + 2

⇔ x2 + 8x + 4 = 0 ⇔ x = -4 ± 2√3 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 ± 2√3

Bài viết liên quan

687
  Tải tài liệu