Giải bóng chuyền gồm 9 đội tham dự, trong đó có 3 đội của nước X

Lời giải Bài 48 trang 18 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

198


Giải SBT Toán 10 Cánh diều Bài tập cuối chương 5

Bài 48 trang 18 SBT Toán 10 Tập 2:

Giải bóng chuyền gồm 9 đội tham dự, trong đó có 3 đội của nước X. Ban tổ chức cho bốc thăm ngẫu nhiên để xếp các đội vào 3 bảng A, B, C và mỗi bảng có 3 đội. Tính số cách xếp sao cho 3 đội bóng của nước X ở 3 bảng khác nhau.

Lời giải:

Mỗi cách xếp 3 đội của nước X vào 3 bảng khác nhau thì có 3! = 6 cách xếp.

Xếp 6 đội còn lại vào 3 bảng A, B, C, mỗi bảng 2 đội là thực hiện ba công việc liên tiếp: Xếp 2 đội vào bảng A, sau đó xếp 2 đội vào bảng B, cuối cùng xếp 2 đội vào bảng C.

Xếp 2 đội trong 6 đội còn lại vào bảng A thì có C62  cách xếp.

Xếp 2 đội trong 4 đội còn lại vào bảng B thì có C42  cách xếp.

Xếp 2 đội trong 2 đội còn lại vào bảng C thì có C22  cách xếp.

Do đó xếp 6 đội còn lại vào 3 bảng A, B, C thì có C62.C42.C22=90  cách xếp.

Vậy số cách xếp sao cho 3 đội bóng của nước X ở 3 bảng khác nhau là: 6.90 = 540 cách xếp.

Bài viết liên quan

198