Cho tam giác ABC có trọng tâm G,I là trung điểm của BC khẳng định nào sau đây sai
A.AB+AC=3AG B.GB+GC=2GI
C.GA+GB+GC=0
D.OA+OB+OC=3OG,O là điểm bất kì
Quảng cáo
2 câu trả lời 867
Trong bài toán này, ta đang xét tam giác ABC với G là trọng tâm và I là trung điểm của cạnh BC. Trọng tâm G của tam giác có một số tính chất quan trọng về các vectơ, và từ đó ta có thể xem xét các khẳng định để xác định khẳng định sai.
### Xét từng khẳng định:
#### A. **\( AB + AC = 3AG \)**
- Đây là một khẳng định **đúng**. Theo tính chất của trọng tâm, ta có: \( AG = \frac{2}{3}AM \) (với M là trung điểm của BC), từ đó suy ra tổng các vectơ \( AB + AC = 3AG \).
#### B. **\( GB + GC = 2GI \)**
- Đây là một khẳng định **đúng**. Theo tính chất của trọng tâm và I là trung điểm của BC, vectơ \( GI \) bằng trung bình của các vectơ \( GB \) và \( GC \), do đó \( GB + GC = 2GI \).
#### C. **\( GA + GB + GC = 0 \)**
- Đây là một khẳng định **đúng**. Theo định lý về trọng tâm, tổng ba vectơ từ trọng tâm đến ba đỉnh của tam giác luôn bằng 0, tức là \( \vec{GA} + \vec{GB} + \vec{GC} = 0 \).
#### D. **\( OA + OB + OC = 3OG \), O là điểm bất kỳ**
- Đây là khẳng định **sai**. Đẳng thức này chỉ đúng nếu O là trọng tâm của tam giác ABC. Nếu O là một điểm bất kỳ, thì không có mối quan hệ cố định nào như vậy giữa tổng ba vectơ OA, OB, OC và OG.
### Kết luận:
Khẳng định **D** là **sai**.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
89037 -
Đã trả lời bởi chuyên gia
59731 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
58851 -
Đã trả lời bởi chuyên gia
50834 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
48266 -
Đã trả lời bởi chuyên gia
38581
