Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\,{\text{(m)}}$ của mực nước trong kênh tính theo thời gian $t$ (giờ) trong một ngày $\left( {0 \leqslant t < 24} \right)$ cho bởi công thức \[h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12.\] Tìm $t$ để độ sâu của mực nước là $9\,\,{\text{m}}$ (làm tròn đến chữ số thập phân thứ hai).
Quảng cáo
1 câu trả lời 259
Độ sâu của mực nước là $9\,\,{\text{m}}$ thì $h = 9$.
Khi đó \[9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \]
\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \Leftrightarrow t = \frac{{6(k2\pi + \pi - 1)}}{\pi },\,\,k \in \mathbb{Z}\].
Vì $0 \leqslant t < 24$ nên $0 \leqslant \frac{{6(k2\pi + \pi - 1)}}{\pi } < 24 \Leftrightarrow 0 < k \leqslant 1$.
Mà \[k \in \mathbb{Z}\] nên \[k = 1 \Rightarrow t = \frac{{6(3\pi - 1)}}{\pi } \approx 16,09\,\,{\text{(m)}}\].
Vậy \[t \approx 16,09\,\,{\text{m}}\].
Quảng cáo
Bạn muốn hỏi bài tập?
