Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ $t$ của năm $2017$ được cho bởi một hàm số $y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10$ với $t \in \mathbb{Z}$ và $0 < t \leqslant 365$. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Quảng cáo
1 câu trả lời 189
Vì $\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \leqslant 1 \Rightarrow y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10 \leqslant 14.$
Ngày có ánh sáng mặt trời nhiều nhất khi và chỉ khi
$y = 14 \Leftrightarrow \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1$
$ \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 149 + 356k.$
Do $0 < t \leqslant 365 \Rightarrow 0 < 149 + 356k \leqslant 365$
$ \Leftrightarrow - \frac{{149}}{{356}} < k \leqslant \frac{{54}}{{89}}$.
Mà $k \in \mathbb{Z}$ nên $k = 0$.
Với $k = 0 \Rightarrow t = 149$ rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2017 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện $0 < t \leqslant 365$ thì ta biết năm này tháng 2 chỉ có 28 ngày).
Quảng cáo
Bạn muốn hỏi bài tập?
