Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Quảng cáo
1 câu trả lời 75

Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.
Ta cần chứng minh rằng tồn tại một đường thẳng a nằm trong mặt phẳng (P) sao cho đường thẳng a vuông góc với mặt phẳng (Q).
Thật vậy, ta lấy:
⦁ d là giao tuyến của hai mặt phẳng (P) và (Q);
⦁ a là đường thẳng nằm trong mặt phẳng (P) sao cho a ⊥ d;
· O là giao điểm của đường thẳng a và mặt phẳng (Q).
Do hai mặt phẳng (P) và (Q) cùng chứa điểm O nên hai mặt phẳng đó cắt nhau theo giao tuyến d đi qua O.
Trong mặt phẳng (Q), qua O kẻ đường thẳng b vuông góc với d.
Như vậy ta có: d là cạnh của góc nhị diện [P, d, Q];
a ⊂ (P) và a ⊥ d tại O (với O ∈ d);
b ⊂ (Q) và b ⊥ d tại O (với O ∈ d);
Suy ra là góc phẳng nhị diện của góc nhị diện [P, d, Q].
Mặt khác (P) ⊥ (Q) nên góc nhị diện [P, d, Q] vuông hay
Suy ra a ⊥ b.
Ta có: a ⊥ d, a ⊥ b và d ∩ b = O trong (Q).
Suy ra a ⊥ (Q).
Vậy nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
134901 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
76057 -
Đã trả lời bởi chuyên gia
71711 -
Đã trả lời bởi chuyên gia
47598
