b) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
Quảng cáo
1 câu trả lời 133
b) ⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 40. Ta có
Mà 14 < 20 < 33 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [140; 160) có r = 140, d = 20, n3 = 19 và nhóm 2 là nhóm [120; 140) có cf2 = 14.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
(km).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 146,32 (km).
⦁ Ta có Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [120; 140) có s = 120; h = 20; n2 = 10 và nhóm 1 là nhóm [100; 120) có cf1 = 4.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(km).
⦁ Ta có Mà 14 < 30 < 33 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 3 là nhóm [140; 160) có t = 140; l = 20; n3 = 19 và nhóm 2 là nhóm [120; 140) có cf2 = 14.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(km).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
134901 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
76057 -
Đã trả lời bởi chuyên gia
71711 -
Đã trả lời bởi chuyên gia
47598
