Quảng cáo
1 câu trả lời 114
Trước hết ta chứng minh một kết quả trong hình học phẳng: Trong hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh.
Xét hình bình hành MNPQ:

Áp dụng định lí côsin trong các tam giác MPQ và QPN, ta có:
MP2 = QM2 + QP2 – 2QM . QP . cos
QN2 = PQ2 + PN2 – 2PQ . PN . cos
Do QM = PN và (do hai góc bù nhau) nên ta có:
MP2 + QN2 = 2(QM2 + QP2).
Xét hình hộp ABCD.A'B'C'D':

Áp dụng kết quả trên cho hai hình bình hành AA'C'C và BB'D'D ta được:
AC'2 + A'C2 = 2(AA'2 + A'C'2)
BD'2 + B'D2 = 2(BB'2 + B'D'2)
Suy ra AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 2(A'C'2 + B'D'2) (do AA' = BB').
Mặt khác, trong hình bình hành A'B'C'D', ta có: A'C'2 + B'D'2 = 2(A'B'2 + A'D'2).
Vậy AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 4A'B'2 + 4A'D'2.
Từ đó suy ra điều phải chứng minh.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
134838 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
75920 -
Đã trả lời bởi chuyên gia
71641 -
Đã trả lời bởi chuyên gia
47575
