Quảng cáo
1 câu trả lời 394
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.
a) Chứng minh (OMN) // (SBC).
b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF // (SBD).
Giải
a) • Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của tam giác SAC, suy ra MO // SC.
Mà SC ⊂ (SCB), suy ra MO // (SCB).
• Xét ∆DCB có: N, O lần lượt là trung điểm của CD, BD nên NO là đường trung bình của tam giác DCB, suy ra NO // BC
Mà BC ⊂ (SBC), suy ra NO // (SCB).
Ta có: MO // (SCB);
NO // (SCB);
MO, NO ⊂ (OMN); MO ∩ NO = O.
Vậy (OMN) // (SBC).
b) Ta có hai tam giác SAD và SAB là các tam giác cân tại A, suy ra AE và AF vừa là
phân giác vừa là đường trung tuyến lần lượt của hai tam giác SAD và SAB, suy ra E và F lần lượt là trung điểm của SD và SB.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
134838 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
75920 -
Đã trả lời bởi chuyên gia
71641 -
Đã trả lời bởi chuyên gia
47575
