Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?
A. Nếu d song song với \[\left( \alpha \right)\] thì trong mặt phẳng \[\left( \alpha \right)\] tồn tại đường thẳng d’ song song với d.
B. Nếu d song song với \[\left( \alpha \right)\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d’ song song với d.
C. Nếu d song song với \[d'\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d song song với (α).
D. Nếu d cắt mặt phẳng \[\left( \alpha \right)\] tại A và d’ là một đường thẳng bất kì trong \[\left( \alpha \right)\] thì d và d’ hoặc cắt nhau hoặc chéo nhau.
Quảng cáo
1 câu trả lời 209
2 năm trước
Đáp án B
Phương pháp giải:
Giải chi tiết:
Khẳng định SAI là: Nếu d song song với \[\left( \alpha \right)\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d’ song song với d.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
Gửi báo cáo thành công!
