Quảng cáo
1 câu trả lời 151
Hướng dẫn giải:
Đáp án B
Đầu tiên sử dụng công thức \({\left( {{u^\alpha }} \right)^/}\) với \(u = \frac{{1 - \sqrt x }}{{1 + \sqrt x }}\)
\(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).{\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/}\)
Tính \({\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^/} = \frac{{{{\left( {1 - \sqrt x } \right)}^/}\left( {1 + \sqrt x } \right) - {{\left( {1 + \sqrt x } \right)}^/}\left( {1 - \sqrt x } \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\)
\( = \frac{{\frac{{ - 1}}{{2\sqrt x }}\left( {1 + \sqrt x } \right) - \frac{1}{{2\sqrt x }}\left( {1 - x} \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\)
Vậy \(y' = 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{{ - 1}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\).
Quảng cáo
Bạn muốn hỏi bài tập?
