Cho một hình vuông cạnh bằng 2. Giả sử \(\sqrt 2 \) ≈ 1,41, tính độ dài đường chéo của hình vuông và ước lượng độ chính xác của kết quả tìm được. Biết 1,41 < \(\sqrt 2 \) < 1,42.
Quảng cáo
1 câu trả lời 95
Hướng dẫn giải:
Đáp án đúng là: B
Gọi đường chéo của hình vuông trên là x.
Độ dài đường chéo của hình vuông cạnh bằng 2 là: \(\overline x \) = \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Với \(\sqrt 2 \) ≈ 1,41, độ dài gần đúng của đường chéo hình vuông là: x = 2 . 1,41 = 2,82.
Ta có :
1,41 < \(\sqrt 2 \) < 1,42 ⇔ 2.1,41 < \(2\sqrt 2 \) < 2.1,42 ⇔ 2,82 < \(\overline x \) < 2,84
Do đó: \(\overline x \) – x = \(\overline x \) – 2,82 < 2,84 – 2,82 < 0,02
Suy ra ∆x = |\(\overline x \) – x| < 0,02.
Vậy độ dài gần đúng đường chéo của hình vuông là 2,82 với độ chính xác 0,02.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
89037 -
Đã trả lời bởi chuyên gia
59731 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
58851 -
Đã trả lời bởi chuyên gia
50834 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
48266 -
Đã trả lời bởi chuyên gia
38581
