Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9. Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5.
Quảng cáo
1 câu trả lời 114
Hướng dẫn giải
Đáp án đúng là: A
Không gian mẫu là số cách lấy ngẫu nhiên 3 chiếc thẻ từ 10 chiếc thẻ:
n(Ω) = \(C_{10}^3 = 120\)
Gọi biến cố A: “3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5”
Để cho biến cố A xảy ra thì trong 3 thẻ lấy được phải có thẻ mang chữ số 0 hoặc chữ số 5. Ta đi tìm số phần tử của biến cố \(\overline A \): “3 thẻ lấy ra không có thẻ mang chữ số 0 và cũng không có thẻ mang chữ số 5”.
Ta có: n(\(\overline A \)) = \(C_8^3 = 56\)
Do đó, \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{56}}{{120}} = \frac{7}{{15}}\)
Vậy P(A) = 1 – P(\(\overline A \)) = \(1 - \frac{7}{{15}} = \frac{8}{{15}}\).
Quảng cáo
Bạn muốn hỏi bài tập?
