Cách tìm điểm đối xứng của 1 điểm qua đường thẳng cực hay
Cách tìm điểm đối xứng của 1 điểm qua đường thẳng cực hay Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm điểm đối xứng của 1 điểm qua đường thẳng cực hay
Cách tìm điểm đối xứng của 1 điểm qua đường thẳng cực hay
- A. Phương pháp giải
-
Cho điểm A và đường thẳng (d): ax + by + c = 0 . Tìm điểm M đối xứng với điểm A qua đường thẳng (d):
+ Bước 1: Lập phương trình đường thẳng AM:
⇒ Phương trình (AM) .
+ Bước 2: Gọi H là hình chiếu của A trên d. Khi đó AM và d giao nhau tại H nên tọa độ H là nghiệm hệ phương trình:
+ Bước 3: Do M đối xứng với A qua d nên H là trung điểm của AM.
Áp dụng công thức trung điểm đoạn thẳng ta được:
-
-
Ví dụ 1: Cho tam giác ABC có AB = 6; BC = 6√2 và góc B = 450.Gọi A’ là điểm đối xứng với A qua BC. Tìm mệnh đề sai?
A. Tứ giác ACA’B là hình thoi
B. AA’ = 3
C. BA’ = 6
D. Tứ giác ACA’B là hình bình hành
Lời giải
+ Áp dụng định lí cosin vào tam giác ABC ta có:
AC2 = AB2 + BC2 – 2.AC.BC.Cos B
= 62 + (6√2)2 - 2.6.6√2.cos450 = 36
⇒ AC = 6 nên AB = AC = 6 và AB2 + AC2 = BC2
⇒ Tam giác ABC vuông cân tại A.
+ Gọi H là chân đường cao hạ từ điểm A lên BC.
AH là đường cao nên đồng thời là đường trung tuyến
⇒ H là trung điểm của BC: AH = BH = CH = BC/2 = 3√2 ⇒ AA’= 6√2
+ Do A’ đối xứng với điểm A qua BC nên H là trung điểm của AA’ và AA’; BC vuông góc với nhau.
Tứ giác ACA’B có hai đường chéo cắt nhau tại trung điểm mỗi đường
⇒ ACA’B là hình bình hành.
Lại có hai đường chéo AA’; BC vuông góc với nhau nên ACA’B là hình thoi.
⇒ B sai
Chọn B.
Ví dụ 2: Cho điểm M(1; 2) và đường thẳng d: 2x + y - 5 = 0. Toạ độ của điểm đối xứng với điểm M qua d là:
A. ( ; ) B. (- ; ) C. (0; ) D. ( ; - 5)
Lời giải
Ta thấy M ∉ d .
Gọi H( a; b) là hình chiếu của điểm M lên đường thẳng d MH→( a - 1; b - 2) .
Ta có đường thẳng d: 2x + y - 5 = 0 nên có vtpt: n→(2;1)
Suy ra u→( -1; 2) là vectơ chỉ phương của đường thẳng d.
Do đó H( ; ) .
Gọi M’( x; y) đối xứng với M qua đường thẳng d . Khi đó ta có: H là trung điểm của MM’
Ta có:
Vậy tọa độ điểm đối xứng với M qua d là M'( ; ) .
Chọn A.
Ví dụ 3 : Cho đường thẳng d: 2x - 3y + 3 = 0 và M( 8; 2) . Tọa độ của điểm M’ đối xứng với M qua d là
A. ( -4; 8) B. ( -4; -8) C. ( 4; 8) D. ( 4; -8)
Lời giải
+ Do M’ đối xứng với M qua d nên MM’ vuông góc với d.
+ Đường thẳng MM’:
⇒ MM’: 3( x - 8) + 2( y - 2) = 0 hay 3x + 2y - 28 = 0
+ Gọi H là giao điểm của MM’ và d. Khi đó tọa độ H là nghiệm hệ :
⇒ H( 6; 5)
+ Do M’ đối xứng với M qua d nên H là trung điểm của MM’. Tọa độ điểm M’ là:
⇒ M’( 4; 8)
Chọn C.
Ví dụ 4: Cho điểm A( 1; 2) và đường thẳng (d): x + 2y - 3 = 0 .Tìm điểm đối xứng với A qua đường thẳng d.
A. ( 1; -2) B. ( ; ) C. ( ; ) D. Đáp án khác
Lời giải
+ Gọi H là hình chiếu của A lên đường thẳng (d) .
+ Lập phương trình đường thẳng AH:
( AH) :
⇒ Phương trình ( AH) : 2( x - 1) – 1.( y - 2) = 0 hay 2x - y = 0
+ Hai đường thẳng AH và d cắt nhau tại H nên tọa độ điểm H là nghiệm hệ phương trình:
+ Gọi B đối xứng với A qua d. Khi đó; H là trung điểm của AB.
⇒ Tọa độ điểm B là: ⇒ B( ; )
Chọn B.
Ví dụ 5: Cho điểm A( 2; 0) và đường thẳng d: x + y - 2 = 0. Tìm điểm A’ đối xứng với điểm A qua đường thẳng d.
A. ( 2; -1) B. (2; 0) C. ( 1; -2) D. (-2; -1)
Lời giải
Ta có: 2 + 0 - 2 = 0 nên điểm A thuộc đường thẳng d.
⇒ Điểm đối xứng với điểm A qua đường thẳng d chính là điểm A.
Chọn B.
Ví dụ 6: Cho tam giác ABC có A( 0; -2).Gọi I ( 2; 4) là trung điểm của AB và J( -4; 2) là trung điểm của AC. Gọi điểm A’ đối xứng điểm A qua BC. Viết phương trình đường thẳng AA’?
A. 6x + 2y - 3 = 0 B. 6x + 2y + 4 =0 C. 2x - y + 1 = 0 D. Tất cả sai
Lời giải
+ Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC ⇒ IJ// BC ( 1) .
+ Do A’ đối xứng với A qua BC
⇒ AA’ vuông góc BC (2).
Từ(1) và ( 2) suy ra: AA’ vuông góc IJ
+ Lập phương trình AA’:
⇒ ( AA’): 6(x - 0) + 2( y + 2) = 0 hay 6x + 2y + 4 = 0.
Chọn B.
Ví dụ 7: Cho đường thẳng ∆ : và điểm M(1; 2). Tìm điểm đối xứng với M qua đường thẳng ∆ là:
A. (4; -2) B. M’(- ; ) C. M’( ; ) D. M’( ; )
Lời giải
Gọi M’ đối xứng với M qua ∆.
+ Đường thẳng MM’:
⇒ Phương trình đường thẳng MM’:
3(x - 1) – 2(y - 2)= 0 hay 3x - 2y + 1 = 0.
+ Giao điểm H của đường thẳng MM’ và ∆ là nghiệm hệ:
+ Điểm M đối xứng M’ qua ∆ nên H là trung điểm MM’. Suy ra tọa độ điểm M’:
⇒ M’(- ; )
Chọn B.
-
-
Ví dụ 8: Cho đường thẳng d: 2x - 3y + 3 = 0 và M( 8; 2) . Tọa độ của điểm M’ đối xứng với M qua d là:
A. ( -4; 8 ) B. (-4; -8 ) C. ( 4; 8) D. (4; -8)
Lời giải
+Phương trình đường thẳng MM’:
⇒ ( MM’) : 3( x - 8) + 2( y - 2) = 0 hay 3x + 2y - 28 = 0
+ Gọi H là hình chiếu của M lên d. Khi đó MM’ và d cắt nhau tại H nên tọa độ H là nghiệm hệ : ⇒ H(6; 5)
+ Khi đó H là trung điểm của đoạn MM’. Áp dụng công thức trung điểm ta suy ra
. Vậy M’( 4; 8) .
Chọn C.
-
C. Bài tập vận dụng
-
-
Câu 1: Cho tam giác ABC có AB = 1; BC = 1√2 và góc B = 450.Gọi A’ là điểm đối xứng với A qua BC. Tìm mệnh đề sai?
A. Tứ giác ACA’B là vuông
B. AA’ = 2
C. BA’ = 1
D. Tứ giác ACA’B là hình bình hành
Câu 2: Cho đường thẳng ∆: . Hoành độ điểm M’ đối xứng với M( 4; 5) qua ∆ gần nhất với số nào sau đây ?
A. 1,12 B. - 0, 91 C. 1,31 D. - 0,92
Câu 3: Tìm điểm M’ đối xứng với M(4; 1) qua đường thẳng d: x - 2y + 4 = 0 là:
A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; )
Câu 4: Cho tam giác ABC có A(1; 3).Gọi I(2; 1) là trung điểm của AB và J( -1; 0) là trung điểm của AC. Tìm điểm K đối xứng với điểm A qua IJ?
A. K( ; - ) B. K( ; ) C. K( - ; - ) D. K( ; )
Câu 5: Cho điểm M(- 2; 1) và đường thẳng ∆: 2x - y + 4 = 0.Gọi điểm M’ đối xứng với M qua đường thẳng ∆. Khi đó điểm M’ nằm trên đường thẳng nào?
A. x + 2y - 3 = 0 B. 2x + 4y - 3 = 0 C. x + 2y = 0 D. x + 2y - 6 = 0
Câu 6: Cho đường thẳng ∆: và điểm M(2; -3); điểm A(-0,6; -1,8). Gọi M’ là điểm đối xứng với M qua đường thẳng ∆. Tính độ dài AM’
A. 3 B. 4 C. 5 D. √17
Câu 7: Tìm điểm đối xứng với điểm A( 1; 2) qua đường thẳng d: = 1
A. H( 1; 2) B. H( ; ) C. H( - ; ) D. H( ; )
-
-
Câu 8: Tìm điểm A’ đối xứng với điểm A( 3;-4) qua đường thẳng d:
A. ( 4; -2) B. (5; 0) C. ( -1; 2) D. ( -1; -3)