Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là: a) A(1; 4), B(0; 1), C(4; 3
Lời giải Bài 3 trang 70 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
b) O(0; 0), P(16; 0), R(0; 12).
Lời giải:
a) Phương trình đường tròn ngoại tiếp tam giác ABC với A(1; 4), B(0; 1), C(4; 3)
Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC
Suy ra
Suy ra I(2; 2)
Bán kính R = IB ta có IB = mà suy ra
Vậy phương trình đường tròn (C) có tâm I(2; 2) và bán kính R = là:
(x – 2)2 + (y – 2)2 = 5.
b) Phương trình đường tròn ngoại tiếp tam giác OPR với O(0; 0), P(16; 0), R(0; 12).
Ta có: ⇒ = 16.0 + 0.12 = 0.
⇒ OP ⊥ OR
Do đó tam giác OPR vuông tại O nên tâm đường tròn ngoại tiếp tam giác OPR là trung điểm của PR và bán kính R = OI.
Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác OPR
Suy ra . Do đó tâm I(8; 6)
Bán kính R = OI mà suy ra
Vậy phương trình đường tròn ngoại tiếp tam giác OPR có tâm I(8; 6) bán kính R = 10 là: (x – 8)2 + (y – 6)2 = 100.
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 70 SBT Toán 10 Tập 2:Lập phương trình đường tròn (C) trong các trường hợp sau: a) (C) có tâm O(0; 0) và có bán kính R = 9...
Bài 3 trang 70 SBT Toán 10 Tập 2:Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là: a) A(1; 4), B(0; 1), C(4; 3)...
Bài 5 trang 70 SBT Toán 10 Tập 2:Cho đường tròn (C) có phương trình x2 + y2 – 6x – 2y – 15 = 0. a) Chứng tỏ rằng điểm A(0; 5) thuộc đường tròn (C)...
Bài 6 trang 70 SBT Toán 10 Tập 2: Một cái cổng hình bán nguyệt rộng 6,8 m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào. a) Viết phương trình mô phỏng cái cổng...
Bài viết liên quan
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 1: Tọa độ của vectơ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 2: Đường thẳng trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 3: Đường tròn trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 4: Ba đường conic trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài tập cuối chương 9