Tung một đồng xu hai lần liên tiếp. a) Xác xuất của biến cố “Kết quả của hai lần tung là khác nhau” là

Lời giải Bài 20 trang 41 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

422


Giải SBT Toán 10 Cánh diều Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản

Bài 20 trang 41 SBT Toán 10 Tập 2:

Tung một đồng xu hai lần liên tiếp.

a) Xác xuất của biến cố “Kết quả của hai lần tung là khác nhau” là:

A. 12 .

B. 14 .

C. 34 .

D. 13 .

b) Xác suất của biến cố “Hai lần tung đều xuất hiện mặt sấp” là:

A. 12 .

B. 14 .

C. 34 .

D. 13 .

c) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt sấp” là:

A. 12 .

B. 14 .

C. 34 .

D. 13 .

d) Xác suất của biến cố “Mặt sấp xuất hiện đúng một lần” là:

A. 12 .

B. 14 .

C. 34 .

D. 13 .

Lời giải:

Không gian mẫu trong trò chơi tung một đồng xu hai lần liên tiếp là tập hợp:

Ω = {SS; SN; NS; NN}.

Do đó n(Ω) = 4.

a) Gọi A là biến cố “Kết quả của hai lần tung là khác nhau”.

Các kết quả thuận lợi cho biến cố A là: SN; NS.

Tức là A = {SN; NS}.

Vì thế, n(A) = 2.

Vậy xác suất của biến cố A là: PA=nAnΩ=24=12 .

Do đó ta chọn phương án A.

b) Gọi B là biến cố “Hai lần tung đều xuất hiện mặt sấp”.

Các kết quả thuận lợi cho biến cố B là: SS.

Tức là B = {SS}.

Vì thế, n(B) = 1.

Vậy xác suất của biến cố B là: PB=nBnΩ=14 .

Do đó ta chọn phương án B.

c) Gọi C là biến cố “Lần thứ nhất xuất hiện mặt sấp”.

Các kết quả thuận lợi cho biến cố C là: SS; SN.

Tức là C = {SS; SN}.

Vì thế, n(C) = 2.

Vậy xác suất của biến cố C là: PC=nCnΩ=24=12 .

Do đó ta chọn phương án A.

d) Gọi D là biến cố “Mặt sấp xuất hiện đúng một lần”.

Các kết quả thuận lợi cho biến cố D là: SN; NS.

Tức là D = {SN; NS}.

Vì thế, n(D) = 2.

Vậy xác suất của biến cố D là: PD=nDnΩ=24=12 .

Do đó ta chọn phương án A.

Bài viết liên quan

422