Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC. Chứng minh rằng AM vuông góc với DE.
Quảng cáo
1 câu trả lời 430
Xét tứ giác ADHE, ta có:
A = (gt)
(ADH) = (vì HD ⊥ AB)
(AEH) = (vì HE ⊥ AC)
Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).
+ Xét ADH và EHD có :
DH chung
AD = EH ( vì ADHE là hình chữ nhật)
(ADN) = (EHD) =
Suy ra: ADH = EHD (c.g.c)
⇒ = (HED)
Lại có: (HED) + = (HEA) =
Suy ra: + =
= ∠(chứng minh trên) ⇒ + =
Gọi I là giao điểm của AM và DE.
Trong AIE ta có: (AIE) = 180o – (+ ) = - =
Vậy AM ⊥ DE.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
17163 -
Đã trả lời bởi chuyên gia
16092 -
Đã trả lời bởi chuyên gia
10026 -
Đã trả lời bởi chuyên gia
8937 -
Đã trả lời bởi chuyên gia
8864 -
Đã trả lời bởi chuyên gia
7517 -
Đã trả lời bởi chuyên gia
5915
Gửi báo cáo thành công!
