Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành.
Quảng cáo
1 câu trả lời 444
Xét EOM và FON có: (MEO) = (NFO) (so le trong do DE//BF)
OE = OF (tính chất hình bình hành)
(MOE)= (NOF) (đối đỉnh )
Suy ra: EOM = FON (g.c.g) ⇒ OM = ON
Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
17163 -
Đã trả lời bởi chuyên gia
16092 -
Đã trả lời bởi chuyên gia
10026 -
Đã trả lời bởi chuyên gia
8937 -
Đã trả lời bởi chuyên gia
8864 -
Đã trả lời bởi chuyên gia
7517 -
Đã trả lời bởi chuyên gia
5915
Gửi báo cáo thành công!
