Quảng cáo
1 câu trả lời 382
To solve the expression \( \frac{5}{14} - \frac{37}{10} - \frac{19}{14} - \frac{63}{10} + 11 \), we should first convert all the fractions to a common denominator.
The least common multiple (LCM) of 14 and 10 is 70.
Now, we will convert each term:
1. \( \frac{5}{14} = \frac{5 \times 5}{14 \times 5} = \frac{25}{70} \)
2. \( \frac{37}{10} = \frac{37 \times 7}{10 \times 7} = \frac{259}{70} \)
3. \( \frac{19}{14} = \frac{19 \times 5}{14 \times 5} = \frac{95}{70} \)
4. \( \frac{63}{10} = \frac{63 \times 7}{10 \times 7} = \frac{441}{70} \)
5. For the integer 11, we convert it to a fraction as well: \( 11 = \frac{11 \times 70}{70} = \frac{770}{70} \)
Now we can rewrite the expression using the common denominator:
\[
\frac{25}{70} - \frac{259}{70} - \frac{95}{70} - \frac{441}{70} + \frac{770}{70}
\]
Next, we combine the numerators:
\[
25 - 259 - 95 - 441 + 770
\]
Calculating step-by-step:
1. \( 25 - 259 = -234 \)
2. \( -234 - 95 = -329 \)
3. \( -329 - 441 = -770 \)
4. \( -770 + 770 = 0 \)
So, the total numerator is 0, and we are left with:
\[
\frac{0}{70} = 0
\]
Therefore, the final answer is:
\[
\boxed{0}
\]
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
30602 -
Đã trả lời bởi chuyên gia
5626
