Rút gọn rồi quy đồng mẫu số hai phân số và
Quảng cáo
1 câu trả lời 274
Để rút gọn và quy đồng mẫu số của hai phân số \(\frac{28}{24}\) và \(\frac{51}{90}\), ta thực hiện các bước sau:
### 1. Rút gọn các phân số
#### Phân số \(\frac{28}{24}\):
- Tìm ước số chung lớn nhất (USCLN) của \(28\) và \(24\).
**Phân tích 28 và 24 ra thừa số nguyên tố:**
\[
28 = 2^2 \cdot 7
\]
\[
24 = 2^3 \cdot 3
\]
**USCLN của 28 và 24:**
\[
\text{USCLN} = 2^2 = 4
\]
- Chia cả tử số và mẫu số của phân số cho USCLN:
\[
\frac{28}{24} = \frac{28 \div 4}{24 \div 4} = \frac{7}{6}
\]
Vậy phân số \(\frac{28}{24}\) rút gọn là \(\frac{7}{6}\).
#### Phân số \(\frac{51}{90}\):
- Tìm USCLN của \(51\) và \(90\).
**Phân tích 51 và 90 ra thừa số nguyên tố:**
\[
51 = 3 \cdot 17
\]
\[
90 = 2 \cdot 3^2 \cdot 5
\]
**USCLN của 51 và 90:**
\[
\text{USCLN} = 3
\]
- Chia cả tử số và mẫu số của phân số cho USCLN:
\[
\frac{51}{90} = \frac{51 \div 3}{90 \div 3} = \frac{17}{30}
\]
Vậy phân số \(\frac{51}{90}\) rút gọn là \(\frac{17}{30}\).
### 2. Quy đồng mẫu số hai phân số
- Phân số rút gọn là \(\frac{7}{6}\) và \(\frac{17}{30}\).
- Tìm mẫu số chung của hai phân số này bằng cách tính bội số chung nhỏ nhất (BSCN) của \(6\) và \(30\).
**Phân tích 6 và 30 ra thừa số nguyên tố:**
\[
6 = 2 \cdot 3
\]
\[
30 = 2 \cdot 3 \cdot 5
\]
**BSCN của 6 và 30:**
\[
\text{BSCN} = 2 \cdot 3 \cdot 5 = 30
\]
- Quy đồng mẫu số về 30.
**Chuyển \(\frac{7}{6}\) về mẫu số 30:**
Nhân cả tử số và mẫu số của \(\frac{7}{6}\) với 5:
\[
\frac{7}{6} = \frac{7 \times 5}{6 \times 5} = \frac{35}{30}
\]
**Phân số \(\frac{17}{30}\) đã có mẫu số là 30.**
### Kết quả
Hai phân số đã quy đồng mẫu số là \(\frac{35}{30}\) và \(\frac{17}{30}\).
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
72395 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
31301 -
Đã trả lời bởi chuyên gia
Số thích hợp viết vào chỗ chấm để 45m2 6cm2 = ........... cm2 là:
A. 456
B. 4506
C. 456 000
D. 450 006
28493 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
27448 -
Đã trả lời bởi chuyên gia
25046 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
24833
