Hình dưới cho biết ∠A =140o;∠B =70o;∠C =150o
Chứng minh rằng Ax //Cy
Quảng cáo
2 câu trả lời 701
Kẻ tia Bz // Ax và Cy’ là tia đối của tia Cy.
Ta có: ∠(B2 ) +∠(xAB) =180o
(hai góc trong cùng phía)
Mà ∠(xAB) =140o(gt)
Suy ra: ∠(B2 ) =180-∠(xAB) =180o-140o=40o
Mà: ∠(B1 ) +∠(B2 ) =∠(ABC)
Suy ra ∠(B1 ) =∠(ABC) -(B2 ) =70o-40o=30o (1)
∠(yCB) +∠(BCy') =180o(2 góc kề bù)
∠BCy'=180o-∠(yCB) =180o-150o=30o (2)
Từ (1) và (2) ta có: ∠(B1 ) =∠(BCy')
Suy ra: Cy’ // Bz ( vì có cặp góc ở vị trí so le trong bằng nhau)
Hay Cy // Bz mà Bz // Ax suy ra Ax // Cy
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
12381
-
Đã trả lời bởi chuyên gia
5734 -
4829
Gửi báo cáo thành công!
