Cho x, y ∈ Q. Chứng tỏ rằng |x + y| ≤ |x| + |y|.
Quảng cáo
1 câu trả lời 422
Với mọi x, y ∈ Q ta luôn có x ≤ |x| và -x ≤ |x|;
y ≤ |y| và -y ≤ |y| ⇒ x + y ≤ |x| + |y| và -x – y ≤ |x| + |y|
hay x + y ≥ -(|x| + |y|).
Do đó –(|x| + |y|) ≤ x + y ≤ |x| + |y|.
Vậy |x + y| ≤ |x| + |y|.
(Dấu “=” xảy ra khi xy ≥ 0.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
12381
-
Đã trả lời bởi chuyên gia
5734 -
4829
Gửi báo cáo thành công!
