Cho bất phương trình x + 2y ≥ -4. a) Biểu diễn miền nghiệm của bất phương trình

Lời giải Bài 2.4 trang 19 SBT Toán 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

243


Giải SBT Toán 10 Kết nối tri thức Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 2.4 trang 19 SBT Toán 10 Tập 1: Cho bất phương trình x + 2y ≥ -4.

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Miền nghiệm có chứa bao nhiêu điểm (x; y) với x, y là các số nguyên âm?

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình x + 2y ≥ -4 trên mặt phẳng tọa độ:

Bước 1. Ta vẽ đường thẳng d: x + 2y = -4 theo các bước sau:

• Xác định hai điểm thuộc đường thẳng d.

Ta có bảng sau:

x

0

-4

y

-2

0

Do đó đường thẳng d: x + 2y = -4 đi qua hai điểm (0; -2) và (-4; 0).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: x + 2y = -4.

Bước 2. Chọn điểm O(0; 0) không thuộc đường thẳng d và thay vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 > -4.

Do đó miền nghiệm của bất phương trình x + 2y ≥ -4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).

Sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

b) Do x, y là các số nguyên âm và x + 2y ≥ -4 nên 0 > x > -4.

Với y ≤ -2 thì 2y ≤ -4, mà x là số nguyên âm nên x + 2y < -4 (loại).

Do đó 0 > y > -2 suy ra y = -1.

Ta có bảng sau:

x

-1

-2

-3

y

-1

-1

-1

x + 2y

-3 > -4 (thỏa mãn)

-4 = -4 (thỏa mãn)

-5 < -4 (loại)

Vậy miền nghiệm chứa hai điểm (x; y)  {(-1; -1); (-2; -1)} với x, y là các số nguyên âm.

Bài viết liên quan

243