Quảng cáo
2 câu trả lời 156
Câu a)
Phương trình:
[ 71 + \frac{26 - 3x}{2} = 75 ]
Giải bước:
Trừ 71 hai vế:
[ \frac{26 - 3x}{2} = 4 ]
Nhân 2 hai vế:
[ 26 - 3x = 8 ]
Trừ 26 và chia -3:
[ -3x = -18 \Rightarrow x = 6 ]
Đáp án: ( x = 6 )
Câu b)
Phương trình:
[ 487 - (104 + x) = 382 ]
Giải bước:
Tính hiệu:
[ 383 = 487 - 104 - x ]
Giải tiếp:
[ 383 = 383 - x \Rightarrow x = 0 ]
Đáp án: ( x = 0 )
Câu c)
Phương trình:
[ \frac{7}{9} - \frac{5}{9} : 9 = \frac{1}{6} ]
Giải bước:
Lưu ý: phép chia phân số:
[ \frac{5}{9} : 9 = \frac{5}{81} ]
Tiếp theo:
[ \frac{7}{9} - \frac{5}{81} = \frac{63 - 5}{81} = \frac{58}{81} ]
Kết quả khác (\frac{1}{6}), nên câu này không có giá trị x cần tìm – có thể là câu đánh đố hoặc chưa hoàn chỉnh.
Câu d)
Dãy tổng:
[ \frac{1}{1 \cdot 3} + \frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{x(x+2)} = \frac{20}{41} ]
Giải ý tưởng:
Dạng tổng này giống kiểu phân tích thành hiệu phân số, ví dụ:
[ \frac{1}{n(n+2)} = \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+2} \right) ]
Nếu mình biết các số trong chuỗi là:
[ \frac{1}{1 \cdot 3}, \frac{1}{1 \cdot 3}, \frac{1}{5 \cdot 7}, \frac{1}{7 \cdot 9}, \ldots ] thì có thể biến đổi để đơn giản và tính tổng.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
Điền vào chỗ trống trong bảng thanh toán sau:
Số thứ tự Loại hàng Số lượng (quyển) Giá đơn vị (đồng) Tổng số tiền (đồng) 1 Vở loại 1 35 2000 ... 2 Vở loại 2 42 1500 ... 3 Vở loại 3 38 1200 ... Cộng: ... 170023 -
78717
-
35452
-
32348



