2000:[202022:22021.25+120:6.75]+20220
Tính
Quảng cáo
2 câu trả lời 265
To solve the expression \(2000:\left[20^{2022}:(2^{2021} \cdot 25) + \frac{120}{6 \cdot 75}\right] + 2022^0\), let's break it down step by step.
1. **Calculate \(2022^0\)**:
\[
2022^0 = 1
\]
2. **Calculate \(20^{2022}\)**:
\[
20^{2022} = (2 \cdot 10)^{2022} = 2^{2022} \cdot 10^{2022} = 2^{2022} \cdot (2 \cdot 5)^{2022} = 2^{2022} \cdot 2^{2022} \cdot 5^{2022} = 2^{4044} \cdot 5^{2022}
\]
3. **Calculate \(2^{2021} \cdot 25\)**:
\[
25 = 5^2 \quad \Rightarrow \quad 2^{2021} \cdot 25 = 2^{2021} \cdot 5^2
\]
4. **Calculate \(20^{2022}:(2^{2021} \cdot 25)\)**:
\[
\frac{20^{2022}}{2^{2021} \cdot 25} = \frac{2^{4044} \cdot 5^{2022}}{2^{2021} \cdot 5^2} = 2^{4044 - 2021} \cdot 5^{2022 - 2} = 2^{2023} \cdot 5^{2020}
\]
5. **Calculate \(120: (6 \cdot 75)\)**:
\[
6 \cdot 75 = 450 \quad \Rightarrow \quad \frac{120}{450} = \frac{120 \div 30}{450 \div 30} = \frac{4}{15}
\]
6. **Combine the two results**:
\[
20^{2022:(2^{2021} \cdot 25)} + \frac{120}{6 \cdot 75} = 2^{2023} \cdot 5^{2020} + \frac{4}{15}
\]
7. **Now substitute back into the full expression**:
\[
2000:\left[2^{2023} \cdot 5^{2020} + \frac{4}{15}\right] + 1
\]
Since we cannot calculate this expression further without specific numerical values, it remains in this form.
If you need a numeric approximation or specific values for \(20^{2022}\), please clarify, and I can assist you with that!
Let's break down the expression \( 2000:[20^{2022}:2^{2021.25}+120:6.75]+2022^0 \) step by step.
1. Compute \( 2022^0 \):
\[
2022^0 = 1
\]
2. Address the part within the brackets, starting with \( 20^{2022} : 2^{2021.25} \).
- First, calculate \( 2^{2021.25} \):
\[
2^{2021.25} = 2^{2021 + 0.25} = 2^{2021} \times 2^{0.25} = 2^{2021} \times \sqrt{2} \approx 2^{2021} \times 1.4142
\]
- Now we can rewrite this as:
\[
20^{2022} : 2^{2021.25} = \frac{20^{2022}}{2^{2021.25}}
\]
- To simplify \( \frac{20^{2022}}{2^{2021.25}} \), we express \( 20 \) as \( 2^2 \times 5 \):
\[
20^{2022} = (2^2 \times 5)^{2022} = 2^{4044} \times 5^{2022}
\]
- Now substituting:
\[
\frac{20^{2022}}{2^{2021.25}} = \frac{2^{4044} \times 5^{2022}}{2^{2021.25}} = 2^{4044 - 2021.25} \times 5^{2022} = 2^{2022.75} \times 5^{2022}
\]
3. Next, address \( 120 : 6.75 \):
\[
120 : 6.75 = \frac{120}{6.75} = \frac{120}{6.75} \approx 17.7778
\]
(You can calculate this as \( 120 \div 6.75 \)).
4. Now, combine everything into the expression within the brackets:
\[
20^{2022} : 2^{2021.25} + 120 : 6.75 = 2^{2022.75} \times 5^{2022} + 17.7778
\]
5. Now put everything back to complete the entire expression \( 2000:[\text{result}] + 1 \).
- The placeholder simply means division and thus is essential to the expression:
\[
\text{Final Expression} = 2000:[2^{2022.75} \times 5^{2022} + 17.7778] + 1
\]
- However, note that we weren't calculating further after combining logs because of the components being large quantities.
In conclusion, if you want a numerical approximation, depending on what you meant by the formatting, it can be calculated directly since large parts won't yield an integer result without a computational tool.
Final result simplifies to an expression different from "traditional" but entails a relation to outputs dependent on context and computation. If the aim was scalar or specific partition of results, consider a calculator for further values distinctly.
Nonetheless, simply from initial components:
\[
\approx 2000 : (\text{large number based on derived logs}) + 1 \text{ (via equality)}
\]
If you have specific constraints for a solution form or numerical upwards, please clarify!
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
Điền vào chỗ trống trong bảng thanh toán sau:
Số thứ tự Loại hàng Số lượng (quyển) Giá đơn vị (đồng) Tổng số tiền (đồng) 1 Vở loại 1 35 2000 ... 2 Vở loại 2 42 1500 ... 3 Vở loại 3 38 1200 ... Cộng: ... 170100 -
Đã trả lời bởi chuyên gia
78752 -
Đã trả lời bởi chuyên gia
63195 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
39467 -
Đã trả lời bởi chuyên gia
35479 -
Đã trả lời bởi chuyên gia
32364



