phân tích: 3x(x-5)(x+4)-x-4
Quảng cáo
2 câu trả lời 127
Để phân tích biểu thức \( 3x(x-5)(x+4) - x - 4 \), ta cần làm các bước sau:
1. Phân phối và rút gọn biểu thức \( 3x(x-5)(x+4) \).
2. Sau đó trừ đi \( x + 4 \).
### Bước 1: Phân phối \( 3x(x-5)(x+4) \)
Đầu tiên, ta phân phối từng bước:
\[
3x(x-5)(x+4) = 3x \left[ (x-5)(x+4) \right]
\]
Phân phối \((x-5)(x+4)\):
\[
(x-5)(x+4) = x^2 + 4x - 5x - 20 = x^2 - x - 20
\]
Bây giờ, ta phân phối tiếp với \( 3x \):
\[
3x(x^2 - x - 20) = 3x^3 - 3x^2 - 60x
\]
### Bước 2: Trừ đi \( x + 4 \)
Ta có biểu thức:
\[
3x^3 - 3x^2 - 60x - x - 4
\]
Gộp các hạng tử giống nhau:
\[
3x^3 - 3x^2 - 61x - 4
\]
Vậy, biểu thức đã phân tích và rút gọn là:
\[
3x^3 - 3x^2 - 61x - 4
\]
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
17519 -
Đã trả lời bởi chuyên gia
8077 -
Đã trả lời bởi chuyên gia
8076
