
Ngọc Anh
Sắt đoàn
0
0
Câu trả lời của bạn: 15:49 21/07/2020
+ Giới hạn:
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên (-1; 3)
Hàm số nghịch biến trên (-∞; -1) và (3; +∞).
Hàm số đạt cực đại tại x = 3, yCĐ = 29.
Hàm số đạt cực tiểu tại x = -1; yCT=-3
- Đồ thị:
+ Giao với trục tung tại (0; 2).
+ Đi qua các điểm (-2; 4); (2; 24).
Câu hỏi:
Câu trả lời của bạn: 15:49 21/07/2020
a)Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:
Quy tắc 1:
1. Tìm tập xác định.
2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.
3. Lập bảng biến thiên.
4. Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
1. Tìm tập xác định.
2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.
3. Tính f"(x) và f"(xi)
4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.
Nếu f"(xi) < 0 thì xi là điểm cực đại.
Dựa vào Quy tắc 2, ta có:
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.
y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.
Câu trả lời của bạn: 15:49 21/07/2020
- Điều kiện đồng biến, nghịch biến của hàm số:
Cho hàm số y = f(x) có đạo hàm trên khoảng K.
+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.
+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.
- Xét hàm số
+ Hàm số đồng biến
+ Hàm số nghịch biến
Vậy hàm số đồng biến trên
nghịch biến trên các khoảng và (1; +∞)
- Xét hàm số
Ta có: D = R \ {1}
∀ x ∈ D.
⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).
Câu trả lời của bạn: 15:49 21/07/2020
Đồ thị cắt trục tung tại điểm P(0;-1), khi đó phương trình tiếp tuyến tại điểm P(0; -1) là:
y = y'(0).(x - 0) - 1
hay y = -2x - 1
Vậy phương trình tiếp tuyến cần tìm là: y = -2x – 1.
Câu trả lời của bạn: 15:49 21/07/2020
Với m = 1, hàm số trở thành
- TXĐ: D = R
- Sự biến thiên:
+ Chiều biến thiên:
+ Giới hạn:
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên (0; +∞)
Hàm số nghịch biến trên (-∞; 0)
Hàm số có điểm cực tiểu là (0; 1).
- Đồ thị:
+ Đồ thị nhận trục Oy là trục đối xứng.
+ Đồ thị cắt trục tung tại (0; 1).
+ Đồ thị hàm số đi qua (-1; 1,75); (1; 1,75); (-2; 7); (2; 7).
Câu trả lời của bạn: 15:49 21/07/2020
+
⇒ đồ thị có tiệm cận đứng là x = -1.
+ Lại có
⇒ đồ thị không có tiệm cận ngang.
Câu hỏi:
Câu trả lời của bạn: 15:49 21/07/2020
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng .
Câu trả lời của bạn: 15:49 21/07/2020
TXĐ: D = R
y"(-1) = -20 + 6 = -14 < 0
⇒ x = -1 là điểm cực đại của hàm số.
y"(1) = 20 – 6 = 14 > 0
⇒ x = 1 là điểm cực tiểu của hàm số.
Câu trả lời của bạn: 15:49 21/07/2020
Câu trả lời của bạn: 15:49 21/07/2020
Tập xác định: D = R \ {±3}
y’ < 0 với ∀ x ∈ D.
y' không xác định tại x = ±3
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; -3); ( -3; 3) và (3; +∞ ).
Câu trả lời của bạn: 15:49 21/07/2020
Tập xác định: D = R \ {1}
y’ < 0 với ∀ x ∈ D (vì –x2 + 2x – 2 < 0).
y' không xác định tại x = 1
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ;1) và (1 ; +∞)
Câu trả lời của bạn: 15:49 21/07/2020
Tập xác định : D = R
y' = x2 + 6x - 7
y' = 0 ⇔ x = -7 hoặc x = 1
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).
Câu trả lời của bạn: 15:49 21/07/2020
Tập xác định : D = R
y' = 3 – 2x
y’ = 0 ⇔ 3 – 2x = 0 ⇔ x =
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).
Câu trả lời của bạn: 15:49 21/07/2020
Xét hàm số y = x3 có đạo hàm y’ = 3x2 ≥ 0 với mọi số thực x và hàm số đồng biến trên toàn bộ R. Vậy khẳng định ngược lại với định lý trên chưa chắc đúng hay nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó không nhất thiết phải dương (âm) trên đó.