Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau. Hỏi đáy ABCD là hình gì để thể tích hình chóp đạt giá trị lớn nhất?
Quảng cáo
1 câu trả lời 332
Vì SA không đổi nên ta có lớn nhất khi và chỉ khi lớn nhất. Ta có = AC.BD/2 trong đó AC và BD là hai dây cung vuông góc với nhau. Vậy AC.BD lớn nhất khi và chỉ khi AC = BD = 2r’, nghĩa là tứ giác ABCD là một hình vuông.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
104103 -
Đã trả lời bởi chuyên gia
94073 -
Đã trả lời bởi chuyên gia
66238 -
Đã trả lời bởi chuyên gia
26134 -
Đã trả lời bởi chuyên gia
19056 -
Đã trả lời bởi chuyên gia
13634
Gửi báo cáo thành công!
