Trong không gian Oxyz, cho điểm M (1;1;2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi
là một véc tơ pháp tuyến của (P). Tính S=a³-2b.
A. S=0.
B. S=-3.
C. S=6.
D. S=-15/8
Quảng cáo
1 câu trả lời 2006
Chọn A
Mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C nên A (a;0;0), B (0;b;0), C (0;0;c) (a, b, c>0).
Phương trình mặt phẳng
+ Mặt phẳng (P) qua M nên
+ Thể tích khối tứ diện OABC:
Thể tích khối tứ diện OABC nhỏ nhất khi suy ra a=3, b=3, c=6.
Vậy S = 0
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
69393 -
Đã trả lời bởi chuyên gia
67790 -
Đã trả lời bởi chuyên gia
31001 -
Đã trả lời bởi chuyên gia
Trong không gian Oxyz, mặt cầu tâm I(-1;2;-3) và đi qua điểm A(2;0;0) có phương trình là:
A.
B.
C.
D.
28197 -
Đã trả lời bởi chuyên gia
16270
