Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y+2)²+ (z-3)²=27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.
Quảng cáo
1 câu trả lời 1942
Mặt cầu (S) có tâm I (1;-2;3) và bán kính R= 3√3.
Vì (α): ax+by-z+c=0 đi qua hai điểm A (0; 0; -4), B (2; 0; 0) nên c = -4 và a = 2.
Suy ra (α): 2x+by-z-4=0.
Đặt IH = x, với 0 < x < 3√3 ta có
Thể tích khối nón là
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
69393 -
Đã trả lời bởi chuyên gia
67790 -
Đã trả lời bởi chuyên gia
31001 -
Đã trả lời bởi chuyên gia
Trong không gian Oxyz, mặt cầu tâm I(-1;2;-3) và đi qua điểm A(2;0;0) có phương trình là:
A.
B.
C.
D.
28197 -
Đã trả lời bởi chuyên gia
16270
