1/x+1 + x=2024/2023
Help me
Quảng cáo
2 câu trả lời 144
To solve the equation
1x+1+x=20242023,\frac{1}{x} + 1 + x = \frac{2024}{2023},x1+1+x=20232024,
we can start by bringing the terms to a common format. Let's isolate the 1x\frac{1}{x}x1 term:
First, simplify by subtracting 111 from both sides:
1x+x=20242023−1.\frac{1}{x} + x = \frac{2024}{2023} - 1.x1+x=20232024−1.
111 can be expressed as 20232023\frac{2023}{2023}20232023, so we can rewrite the right-hand side:
1x+x=2024−20232023=12023.\frac{1}{x} + x = \frac{2024 - 2023}{2023} = \frac{1}{2023}.x1+x=20232024−2023=20231.
Now, multiply through by xxx (assuming x≠0x \neq 0x=0) to eliminate the fraction:
1+x2=12023x.1 + x^2 = \frac{1}{2023} x.1+x2=20231x.
Rearranging gives us a quadratic equation:
x2−12023x+1=0.x^2 - \frac{1}{2023} x + 1 = 0.x2−20231x+1=0.
To solve this quadratic equation, we can use the quadratic formula x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4ac:
Here, a=1a = 1a=1, b=−12023b = -\frac{1}{2023}b=−20231, and c=1c = 1c=1.
Plugging in the values:
x=−(−12023)±(−12023)2−4⋅1⋅12⋅1,x = \frac{-(-\frac{1}{2023}) \pm \sqrt{(-\frac{1}{2023})^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1},x=2⋅1−(−20231)±(−20231)2−4⋅1⋅1,
x=12023±120232−42.x = \frac{\frac{1}{2023} \pm \sqrt{\frac{1}{2023^2} - 4}}{2}.x=220231±202321−4.
Now calculate the discriminant:
Discriminant=120232−4=1−4⋅2023220232.\text{Discriminant} = \frac{1}{2023^2} - 4 = \frac{1 - 4 \cdot 2023^2}{2023^2}.Discriminant=202321−4=202321−4⋅20232.
Next, we need to determine whether the discriminant is positive, zero, or negative. Since 4⋅202324 \cdot 2023^24⋅20232 is much larger than 1, the discriminant will be negative.
Since the discriminant is negative, this means there are no real solutions for the equation.
Thus, the original equation 1x+1+x=20242023\frac{1}{x} + 1 + x = \frac{2024}{2023}x1+1+x=20232024 does not have any real solutions.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
4769
-
2408
