Quảng cáo
3 câu trả lời 14435
Để giải bài toán này, ta sử dụng công thức tổng số phân tử khí trong bình khi biết dung tích, áp suất, nhiệt độ và hằng số Avogadro. Công thức liên quan như sau:
\[ n = \frac{P V}{R T} \]
Trong đó:
- \( n \) là số mol của khí.
- \( P \) là áp suất khí (ở đơn vị Pa, cần chuyển đổi từ mmHg).
- \( V \) là dung tích của bình (ở đơn vị m³, cần chuyển đổi từ lít).
- \( R \) là hằng số khí lý tưởng (\( R = 0.0821 \) L·atm/mol·K).
- \( T \) là nhiệt độ (ở đơn vị K).
Ta cần chuyển đổi đơn vị của áp suất và dung tích trước khi tính toán:
1. Chuyển đổi dung tích từ lít sang m³:
\[ V = 5.0 \text{ L} = 5.0 \times 10^{-3} \text{ m}^3 \]
2. Chuyển đổi áp suất từ mmHg sang atm:
\[ P = 10^{-5} \text{ mmHg} = 10^{-5} \times 760 \text{ atm} = 7.6 \times 10^{-3} \text{ atm} \]
Giờ ta có đủ thông số để tính số mol của khí:
\[ n = \frac{P V}{R T} \]
\[ n = \frac{7.6 \times 10^{-3} \times 5.0 \times 10^{-3}}{0.0821 \times 300} \]
\[ n = \frac{3.8 \times 10^{-5}}{24.63} \]
\[ n \approx 1.54 \times 10^{-6} \text{ mol} \]
Số phân tử khí trong bình là \( N = n \times N_A \), trong đó \( N_A \) là số Avogadro (\( N_A = 6.022 \times 10^{23} \) phân tử/mol):
\[ N = 1.54 \times 10^{-6} \times 6.022 \times 10^{23} \]
\[ N \approx 9.28 \times 10^{17} \]
Để tìm \( x \), ta cần viết \( N \) dưới dạng \( x \times 10^y \), với \( x \) là số mà ta cần tìm:
\[ 9.28 \times 10^{17} = x \times 10^5 \]
\[ x = \frac{9.28 \times 10^{17}}{10^5} \]
\[ x = 9.28 \times 10^{12} \]
Vậy số phân tử khí trong bình là \( x = 9.28 \times 10^{12} \).
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
153203
-
110953
-
106707
-
71461
