a,Tính điện tích hình vuông ABCD
B,Tính diện tích hình thoi BMDN
C,Gọi Plaf trung điểm của đoạn thẳng AB ,AP cắt MQ tại H
Số sánh điện tích hình tam giác AHQ với diện tích hình tam giác MHP
Quảng cáo
1 câu trả lời 2362
a)
Vì BM là đường chéo của hình thoi BMDN, và MN = NC, nên đường chéo1 BM = 9 cm.
Đường chéo2 DN = MC = 9/2 cm (vì AM = MN = NC).
Vậy diện tích hình thoi BMDN = (9 * 9/2) / 2 = 40.5 cm^2.
c) Gọi P là trung điểm của đoạn thẳng AB. Khi đó, MP cắt AC tại H vì P là trung điểm của AB.
Vì M là trung điểm của AC, nên MH = MC/2 = 9/4 cm.
Vì P là trung điểm của AB, nên PH = AH/2.
Vậy diện tích tam giác AHQ = (1/2) * AH * MQ = (1/2) * (PH + AH) * MQ = (1/2) * (2PH) * MQ = PH * MQ.
Vậy diện tích tam giác AHQ = PH * MQ = (AH/2) * MQ = (PH/2) * MQ = (1/2) * (PH * MQ).
Vậy diện tích tam giác AHQ = (1/2) * diện tích tam giác MHP.
Do đó, diện tích tam giác AHQ và diện tích tam giác MHP bằng nhau.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
46256
-
Hỏi từ APP VIETJACK30931
