Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm

Lời giải Bài 2.7 trang 23 SBT Toán 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

262


Giải SBT Toán 10 Kết nối tri thức Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài 2.7 trang 23 SBT Toán 10 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình x+y6x0y0.

Lời giải:

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (6; 0) và (0; 6).

Chọn điểm I(1; 1)  d1 và thay vào biểu thức x + y ta được 1 + 1 = 2 < 6.

Suy ra miền nghiệm của bất phương trình x + y ≤ 6 là nửa mặt phẳng bờ d1 có chứa điểm I(1; 1).

• Đường thẳng d2: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1)  d2 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d2 có chứa điểm I(1; 1).

• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1)  d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 có chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Sách bài tập Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn - Kết nối tri thức (ảnh 1)

Ta thấy miền nghiệm của hệ bất phương trình đã cho là miền tam giác AOB với A(6; 0), O(0; 0) và B(0; 6).

F(6; 0) = 2 . 6 + 3. 0 = 12;

F(0; 0) = 2 . 0 + 3 . 0 = 0;

F(0; 6) = 2 . 0 + 3 . 6 = 18.

Do đó giá trị lớn nhất của F(x; y) = 18 khi x = 0 và y = 6; giá trị nhỏ nhất của F(x; y) = 0 khi x = 0 và y = 0.

Bài viết liên quan

262