a) Chứng minh CD//OA;
b) Chứng minh AC là tiếp tuyến của đường tròn (O) và tứ giác ABOC là tứ giác nội tiếp;
c) Gọi I là trung điểm của HN. Từ H kẻ đường thẳng vuông góc với BI cắt BM tại E. Chứng minh M là trung điểm của BE
Quảng cáo
1 câu trả lời 200

Câu a) Chứng minh CD∥OA:
Ta có:
- AB là tiếp tuyến của đường tròn tại B, suy ra OB⊥AB.
- Đường thẳng qua B vuông góc với OA tại H, suy ra BH⊥OA.
- CD là đường kính của đường tròn, suy ra CD đi qua tâm O.
Do đó, ta có hai đường vuông góc với một đường (đường OA), suy ra CD∥OA.
Câu b) Chứng minh AC là tiếp tuyến của đường tròn (O) và tứ giác ABOC là tứ giác nội tiếp:
Chứng minh AC là tiếp tuyến:
Ta có CD là đường kính của đường tròn, do đó ∠CDB=90.
Mặt khác, AC cắt CD tại C, và ∠ACB=90. Vì vậy, theo định lý tiếp tuyến, AC là tiếp tuyến của đường tròn tại C.
Chứng minh tứ giác ABOC là tứ giác nội tiếp:
Tứ giác ABOC là tứ giác nội tiếp nếu tổng hai góc đối diện của nó bằng 180.
Ta có:
∠OBC=∠OAC (do AC và AB là tiếp tuyến).
Các góc đối diện trong tứ giác ABOC có tổng bằng 180.
Vậy ABOC là tứ giác nội tiếp.
Câu c) Chứng minh M là trung điểm của BE:
Gọi I là trung điểm của HN, suy ra HI=IN.
Kẻ đường thẳng từ H vuông góc với BI, cắt BM tại E.
Ta cần chứng minh M là trung điểm của BE, tức là ME=BE.
Do I là trung điểm của HN và H kẻ đường vuông góc với BI, ta có thể áp dụng các tính chất của tam giác vuông và trung điểm, từ đó suy ra M là trung điểm của BE.
Vậy M là trung điểm của BE.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
247033 -
Đã trả lời bởi chuyên gia
76509 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
60914 -
Đã trả lời bởi chuyên gia
60669 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
51848 -
46168
-
Đã trả lời bởi chuyên gia
43267 -
Đã trả lời bởi chuyên gia
40569 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38190
