Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 ( chẳng hạn 37 + 73 = 110, chia hết cho 11)
Quảng cáo
1 câu trả lời 225
Gọi số tự nhiên có hai chữ số là ab(a ≠0)
Số viết theo thứ tự ngược lại của ab là ba
Ta có: ab = 10a + b ; ba = 10b + a
Do đó: ab+ ba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
14025 -
Đã trả lời bởi chuyên gia
7476 -
6581
Gửi báo cáo thành công!
