Cho ba đường thẳng không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Chứng minh ba đường thẳng trên đồng quy.
Quảng cáo
1 câu trả lời 697
Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).
Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.
+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)
+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).
Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)
⇒ d3 ⊂ (P)
⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).
⇒ M ≡ N
⇒ M ≡ N ≡ I
Vậy d1; d2; d3 đồng quy.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
19082 -
Đã trả lời bởi chuyên gia
Xác định a để 3 số : theo thứ tự lập thành một cấp số cộng?
A. Không có giá trị nào của a
B. a=0
C.
D.
14892 -
Đã trả lời bởi chuyên gia
10300
Gửi báo cáo thành công!
