Bạn hỏi - Chuyên gia trả lời
Bạn cần hỏi gì?
∆:x=ty=4-tz=-1+2t và ∆':x=t'y=2-3t'z=-3t'
∆:x=1+ty=-1-tz=1 và ∆':x=2-3t'y=2+3t'z=3t'
Cho đường thẳng: ∆:x+32=y+13=z+12 và mặt phẳng (α) : 2x – 2y + z + 3 = 0.
Tính khoảng cách giữa ∆ và (α).
Chứng minh rằng ∆ song song với (α).
Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng ∆: x-12=y2=z1
Tìm a để hai đường thẳng sau đây song song:
d:x=5+ty=atz=2-t và d':x=1+2t'y=a+4t'z=2-2t'
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau: d:x=ty=1+tz=2-t và d':x=9+2t'y=8+2t'z=10-2t'
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau: d':x-13=y-52=z-42
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau: d:x+11=y-12=z+33
Xét vị trí tương đối của đường thẳng d với mặt phẳng (α) trong các trường hợp sau:
d:x=3-ty=2-tz=1+2t và (α): x + y + z - 6 = 0
d:x=2-ty=tz=2+t và (α): x + z + 5 = 0
d:x=ty=1+2tz=1-t và (α): x + 2y + z - 3 = 0
Viết phương trình của đường thẳng ∆ nằm trong mặt phẳng (α): x + 2z = 0 và cắt hai đường kính
d1x=1-ty=tz=4tvà d2x=2-t'y=4+2t'z=4
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng (α) : 2x – y + z + 9 = 0
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a→ = (3; 3; 1)
Lập phương trình của mặt phẳng (α) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.
Viết phương trình của mặt phẳng (β) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng (α): 2x – y + 3z + 4 = 0
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây: (α3): x – y + 2z – 4 = 0, (α'3): 10x − 10y + 20z – 40 = 0
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây: (α2): x − 2y + z + 3 = 0, (α'2): x − 2y – z + 3 = 0
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây: (α1): 3x − 2y − 3z + 5 = 0, (α'1): 9x − 6y − 9z – 5 = 0
Cho điểm A(2; 3; 4). Hãy viết phương trình của mặt phẳng (α) đi qua các hình chiếu của điểm A trên các trục tọa độ.
Lập phương trình của mặt phẳng (α) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:
(β): 3x – 2y + 2z + 7 = 0
(γ): 5x – 4y + 3z + 1 = 0
Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng 1. Dùng phương pháp tọa độ để: Tính khoảng cách giữa hai mặt phẳng đó.
Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng 1. Dùng phương pháp tọa độ để: Chứng minh hai mặt phẳng (AB’D’) và (BC’D) song song
Tìm tập hợp các điểm cách đều hai mặt phẳng
(α) : 3x – y + 4z + 2 = 0
(β) : 3x – y + 4z + 8 = 0
Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau: (γ): z + 5 = 0
Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau: (β): 3x + 4z + 25 = 0
Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau: (α): x + 2y – 2z + 1 = 0
Xác định các giá trị của A, B để hai mặt phẳng sau đây song song với nhau:
(α): Ax – y + 3z + 2 = 0
(β): 2x + By + 6z + 7 = 0
Lập phương trình mặt phẳng (α) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng (β): x + 2y – z = 0 .
Hãy viết phương trình mặt phẳng (α) đi qua gốc tọa độ O(0; 0; 0) và song song với mặt phẳng (β) : x + y + 2z – 7 = 0.
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng (α) đi qua điểm D và song song với mặt phẳng (ABC).
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng (ABC).
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua ba điểm M(1; 1; 1), N(4; 3; 2), P(5; 2; 1).
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto u→= (0; 1; 1), v→ = (−1; 0; 2)
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua điểm M(2; 0; 1) và nhận n→ = (1; 1; 1) làm vecto pháp tuyến
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 4) và gốc tọa độ O. Hãy xác định tâm và bán kính của mặt cầu đó.
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau: Đi qua điểm M(2; -1; -3) và có tâm C(3; -2; 1)