Bạn hỏi - Chuyên gia trả lời
Bạn cần hỏi gì?
Cho đường tròn (C) và điểm A nằm ngoài mặt phẳng chứa (C). Có tất cả bao nhiêu mặt cầu chứa đường tròn (C) và đi qua A?
A. 0 B. 1
C. 2 D. Vô số
Cho mặt cầu S(O;R) và đường thẳng ∆. Biết khoảng cách từ O tới ∆ bằng d. Với điều kiện nào sau đây thì đường thẳng ∆ tiếp xúc với mặt cầu S(O;R)?
A. d = R B. d > R
C. d < R D. d ≠ R
Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật. Tâm của mặt cầu (S) là:
A. Tâm của hình hộp chữ nhật
B. Tâm của một mặt bên của hình hộp chữ nhật
C. Trung điểm của một cạnh của hình hộp chữ nhật
D. Một đỉnh bất kì của hình hộp chữ nhật
Cho mặt cầu S(O;R) và điểm A cố định với OA = d > R. Qua A kẻ đường thẳng ∆ tiếp xúc với mặt cầu S(O;R) tại M. Độ dài đoạn thẳng AM là:
A. d2+R2 B. 2R2-d2
C. R2-2d2 D. d2-R2
Cho một mặt cầu có diện tích S, thể tích khối cầu đó là V. Bán kính R của mặt cầu là:
A. R = 4V/S B. R = S/3V
C. R = 3V/S D. R = V/3S
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình cầu nội tiếp hình lập phương đó. Khi đó:
VHVABCD.A'B'C'D'
A. π/6 B. π/4
C. π/3 D. π/(3)
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình trụ tròn xoay ngoại tiếp hình lập phương đó. Khi đó: VHVABCD.A'B'C'D'
A. 3/2 B. π/2
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình nón tròn xoay nội tiếp hình lập phương đó. Khi đó: VHVABCD.A'B'C'D'
A. 1/3 B. π/6
C. π/8 D. π/12
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khi đó thể tích hình chóp A.A'BCD' bằng:
A. a3/2 B. a3/3
C. a3/4 D. a3/6
Thể tích hình nón tròn xoay ngoại tiếp tứ diện đều cạnh a bằng:
A. πa39 B. π2a318
C. π3a318 D. π6a327
Cho hình chóp ngũ giác S.ABCDE. Gọi A', B', C', D', E' lần lượt là trung điểm của SA, SB, SC, SD, SE. Khi đó: VS.A'B'C'D'E'VS.ABCDE
A. 1/2 B. 1/5
C. 1/8 D. 1/32
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Chứng minh các điểm A, B, C, B', C' cùng thuộc một mặt cầu. Viết phương trình của mặt cầu đó và phương trình của mặt phẳng tiếp xúc với mặt cầu đó tại C'.
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tìm điểm đối xứng với B qua mặt phẳng (P)
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tính thể tích tứ diện SAB'C'
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tìm tọa độ của các điểm B' là gia của (P) với đường thẳng SB, C' là giao của (P) với đường thẳng SC
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Viết phương trình của mặt phẳng (P) qua A và vuông góc với SB
Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.
Chứng minh A'C ⊥ (BC'D)
Hãy tìm tọa độ các đỉnh còn lại
Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Tìm tọa độ tâm và bán kính của đường tròn đó.
Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Chứng minh rằng (P) cắt (S) theo một đường tròn.
Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - z + 5 = 0 và hai điểm A(-2; -1; 1), B(6; 6; 5). Trong các đường thẳng qua A và song song với (P) hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất.
Cho hai đường thẳng d, d' và M(2; -1; 0)
d: x=3+ty=1-tz=2t , d': x=1+t'y=2t'z=-1+t'
Tìm tọa độ điểm A trên d và điểm B trên d' để M, A, B thẳng hàng.
Chứng minh rằng d và d' chéo nhau.
Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: x-3=y-1=z2
Tìm tập hợp những điểm cách đều ba điểm A, B, C.
Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).
Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H). Xác định r để (H') có thể tích lớn nhất.
Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H). Tính tỉ số thể tích của (H') và (H)
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Chứng minh rằng tâm các mặt cầu nội tiếp và ngoại tiếp của tứ diện ABCD trùng nhau. Tính bán kính của các mặt cầu đó theo a, b, c.
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Tính VABCD theo a, b, c
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Chứng minh rằng các đường vuông góc chung của các cặp cạnh đối diện đồng quy và đôi một vuông góc với nhau
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60°. Tính khoảng cách giữa DM và SC.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60°. Thể tích hình chóp S.CDNM
Cho lăng trụ ABC.A'B'C'. Tính VACA'B' biết rằng tam giác ABC là tam giác đều cạnh bằng a, AA' = b và AA' tạo với (ABC) một góc bằng 60°
Cho lăng trụ ABC.A'B'C'. Tính tỉ số: VACA'B'VABC.A'B'C'
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.
Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho AC→ = (0; 6; 0). Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: x=-3+2ty=1-tz=-1+4t
Viết phương trình đường thẳng ∆ đi qua A , cắt và vuông góc với đường thẳng d.
Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0
và đường thẳng d: x=1+ty=1+tz=9
Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
Lập phương trình tham số của đường thẳng d đi qua điểm M0x0,y0,z0 và song song với hai mặt phẳng cắt nhau
(P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0