Bạn hỏi - Chuyên gia trả lời
Bạn cần hỏi gì?
Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau: (β): 3x + 4z + 25 = 0
Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau: (α): x + 2y – 2z + 1 = 0
Xác định các giá trị của A, B để hai mặt phẳng sau đây song song với nhau:
(α): Ax – y + 3z + 2 = 0
(β): 2x + By + 6z + 7 = 0
Lập phương trình mặt phẳng (α) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng (β): x + 2y – z = 0 .
Hãy viết phương trình mặt phẳng (α) đi qua gốc tọa độ O(0; 0; 0) và song song với mặt phẳng (β) : x + y + 2z – 7 = 0.
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng (α) đi qua điểm D và song song với mặt phẳng (ABC).
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng (ABC).
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua ba điểm M(1; 1; 1), N(4; 3; 2), P(5; 2; 1).
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto u→= (0; 1; 1), v→ = (−1; 0; 2)
Viết phương trình mặt phẳng (α) trong các trường hợp sau: (α) đi qua điểm M(2; 0; 1) và nhận n→ = (1; 1; 1) làm vecto pháp tuyến
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 4) và gốc tọa độ O. Hãy xác định tâm và bán kính của mặt cầu đó.
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau: Đi qua điểm M(2; -1; -3) và có tâm C(3; -2; 1)
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau: Có tâm là điểm C(4; -4; 2) và đi qua gốc tọa độ
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau: Có tâm I(5; -3; 7) và có bán kính r = 2.
Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:
A(a; 0; 0), B(0; b; 0), C(0; 0; c)
Chứng minh rằng tam giác ABC có ba góc nhọn.
Tính khoảng cách giữa hai điểm A và B trong mỗi trường hợp sau: A(2; 3; 4), B(6; 0; 4)
Tính khoảng cách giữa hai điểm A và B trong mỗi trường hợp sau: A(4; -1; 1), B(2; 1; 0)
Tính tích vô hướng của hai vecto a→, b→ trong không gian với các tọa độ đã cho là: a→ = (0; 2; 3), b→ = (1; 3; −2)
Tính tích vô hướng của hai vecto a→, b→ trong không gian với các tọa độ đã cho là: a→ = (1; −5; 2), b→ = (4; 3; −5)
Tính tích vô hướng của hai vecto a→, b→ trong không gian với các tọa độ đã cho là: a→ = (3; 0; −6), b→ = (2; −4; c)
Cho hình tứ diện ABCD. Từ hệ thức trên hãy suy ra định lí: “Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau.”
Cho hình tứ diện ABCD. Chứng minh hệ thức: AB→.CD→+AC→.DB→+AD→.BC→=0
Trong không gian Oxyz cho một vecto a→ tùy ý khác vecto 0→. Gọi α, β, γ là ba góc tạo bởi ba vecto đơn vị i→, j→, k→ trên ba trục Ox, Oy, Oz và vecto a→. Chứng minh rằng: cos2α+cos2β+cos2γ=1
Trong không gian cho ba vecto tùy ý a→, b→, c→
Gọi u→ = a→ − 2b→ , v→ = 3b→ − c→, w→ = 2c→ − 3a→
Chứng tỏ rằng ba vecto u→, v→, w→ đồng phẳng.
Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng: AB→-CD→=AC→BD→=2PQ→
Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng: AB→+CD→=AD→+CB→=2MN→
Cho hình tứ diện ABCD. Chứng minh rằng: AB→=12AC→+12AD→+12CD→+DB→
Cho hình tứ diện ABCD. Chứng minh rằng: AC→+BD→=AD→+BC→
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Cho hai bộ ba điểm: M = (1; 1; 1), N = (-4; 3; 1), P = (-9; 5; 1). Hỏi bộ nào có ba điểm thẳng hàng?
Cho hai bộ ba điểm: A = (1; 3; 1), B = (0; 1; 2), C = (0; 0; 1). Hỏi bộ nào có ba điểm thẳng hàng?
Trong không gian Oxyz cho điểm M có tọa độ (x0; y0; z0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Trong không gian Oxyz cho vecto a→ = (1; −3; 4). Tìm tọa độ của vecto c→ biết rằng a→ và c→ ngược hướng và |c→| = 2|a→|
Trong không gian Oxyz cho vecto a→ = (1; −3; 4). Tìm y0 và z0 để cho vecto b→ = (2; y0; z0) cùng phương với a→
Trong không gian Oxyz cho ba vecto a→ = (2; −1; 2), b→ = (3; 0; 1), c→ = (−4; 1; −1). Tìm tọa độ của các vecto m→ và n→ biết rằng: n→ = 2a→ + b→ + 4c→
Trong không gian Oxyz cho ba vecto a→ = (2; −1; 2), b→ = (3; 0; 1), c→ = (−4; 1; −1). Tìm tọa độ của các vecto m→ và n→biết rằng: m→ = 3a→ − 2b→ + c→
Cho khối trụ có bán kính đáy bằng a và thiết diện đi qua là một hình vuông. Thể tích khối trụ là:
A. 2πa3 B. 2πa3/3
C. 4πa3 D. πa3
Cho hình trụ có bán kính đáy a và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là:
A. 3πa2 B. 2πa2
C. 4πa2 D. πa2
Trong không gian, cho tam giác ABC vuông tại A, AB = a và AC = a3. Khi quay tam giác ABC xung quanh AB, ta được một khối nón có độ dài đường sinh là:
A. l = 2a B. l = a2
C. l = a3 D. l = a