Bạn hỏi - Chuyên gia trả lời
Bạn cần hỏi gì?
Cho hình hộp ABCD. A'B'C'D'. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai?
A. IK→=12AC→=12A'C'→
B. Bốn điểm I,K,C,A đồng thẳng
C. BD→+2IK→=2BC→
D. Ba vecto BD→, IK→, BC→ không đồng phẳng
Phần I: Trắc nghiệm
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
- Đặt SA→=a→, SB→=b→, SC→=c→, SD→=d→.Khẳng định nào sau đây đúng?
A. a→+c→=d→+b→
B. a→+b→=d→+c→
C. a→+d→=b→+c→
D. a→+b→+c→+d→=0→
Cho hình chóp S.ABCD. Gọi M, N là hai điểm trên SB, CD và (P) là mặt phẳng qua MN và song song với SC. Xác định thiết diện của hình chóp và mặt phẳng (P).
Cho hình chóp S.ABCD. Gọi M, N là hai điểm trên SB, CD và (P) là mặt phẳng qua MN và song song với SC. Tìm giao tuyến của mặt phẳng (P) với các mặt phẳng (SCD); (SBC); (SAC).
Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho AMAB=ANAC ; gọi I và J lần lượt là trung điểm của BD, CD. Tứ giác MNJI là hình gì. Tìm điều kiện để tứ giác MNJI là hình bình hành.
Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho AMAB=ANAC ; gọi I và J lần lượt là trung điểm của BD, CD. Chứng minh rằng: BC // (MNI)
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. Tìm giao tuyến của các mặt phẳng: d2=SCD∩MAB
Phần II: Tự luận
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. Tìm giao tuyến của các mặt phẳng: d1=SAB∩SCD
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm I trên đoạn SO sao cho SISO=23 , BI cắt SD tại M và DI cắt SB tại N. MNBD là hình gì ?
A. Hình thang.
B. Hình bình hành.
C. Hình chữ nhật.
D. Tứ diện vì MN và BD chéo nhau.
Cho tứ diện ABCD với M, N lần lượt là trọng tâm các tam giác ABD, ACD. Xét các khẳng định sau:
(I) MN // mp(ABC).
(II) MN // mp (BCD).
(III) MN // mp(ACD).
(IV) MN // mp(CDA).
A. I, II.
B. II, III.
C. III, IV.
D. I, IV.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây sai?
A. IO // mp(SAB) .
B. IO // mp(SAD).
C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác.
D. (IBD) ∩ (SAC).
Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA, SD. Bốn điểm nào sau đây đồng phẳng?
A. M, P, R, T
B. M, Q, T, R
C. M, N, R, T
D. P, Q, R, T
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng?
A. d qua S và song song với BC.
B. d qua S và song song với DC.
C. d qua S và song song với AB.
D. d qua S và song song với BD.
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm AC, BC, BD, AD. Tìm điều kiện để tứ giác MNPQ là hình thoi.
A. AB = BC.
B. BC = AD.
C. AC = BD.
D. AB = CD.
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, AD, CD, BC. Mệnh đề nào sau đây sai ?
A. MN// BD và MN=12BD
B. MN // PQ và MN = PQ.
C. MNPQ là hình bình hành.
D. MP và NQ chéo nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?
A. EF
B. CD
C. AD
D. AB
Hãy chọn câu đúng?
A. Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau.
B. Hai đường thẳng song song nhau nếu chúng không có điểm chung.
C. Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau.
D. Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau.
Chọn mệnh đề đúng trong các mệnh đề sau:
A. Hai đường thẳng không có điểm chung thì chéo nhau.
B. Hai đường thẳng phân biệt không có điểm chung thì chéo nhau.
C. Hai đường thẳng chéo nhau thì không có điểm chung.
D. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau.
Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD=a2
- Tính khỏang cách giữa đường thẳng CD và mp(SAB).
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao SO=a33. Khoảng cách từ điểm O đến cạnh bên SA bằng:
Cho hình chóp S.ABC trong đó SA; AB; BC vuông góc với nhau từng đôi một. Biết SA=a3, AB=a3 . Khoảng cách từ A đến (SBC) bằng:
Cho hình chóp tam giác S.ABC với SA vuông góc với mp(ABC); SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (DFK)⊥(ACD)
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABC)⊥(DFK)
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABE)⊥(ADC)
Cho tứ diện ABCD có AB⊥(BCD). Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong mp(ADC), vẽ DK⊥AC tại K. Chứng minh: (ADC)⊥(DFK)
Cho tứ diện ABCD có AB⊥(BCD). Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong mp(ADC), vẽ DK⊥AC tại K. Chứng minh: (ADC)⊥(ABE)
Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Chứng minh: Góc giữa hai mặt phẳng (ACD) và (BCD) là AIB^
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Chứng minh: SO ⊥ AB.
Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Góc giữa AB và CD là?
Cho tứ diện ABCD có AB = CD = a, IJ= a32 (I, J lần lượt là trung điểm của BC và AD). Số đo góc giữa hai đường thẳng AB và CD là:
Cho tứ diện ABCD. Trên các cạnh AD và BC lần lượt lấy M, N sao cho AM = 3MD; BN = 3NC. Gọi P, Q lần lượt là trung điểm của AD và BC. Chứng minh các vectơ MN→, DC→, PQ→ đồng phẳng.
Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính AB.→EG→
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA→=a→, SB→=b→, SC→=c→, SD→=d→. Chứng minh: a→+c→=d→+b→ .
Trong không gian cho điểm O bất kì và bốn điểm A, B, C, D không thẳng hàng. Chứng minh điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: OA→+OC→=OB→+OD→
Cho hình lăng trụ ABC.A'B'C', M là trung điểm của BB’. Đặt CA→=a→, CB→=b→, AA'→=c→ . Biểu diễn AM→ theo các vecto a→, b→, c→ .
Hàm số y = x.sin x + cosx có vi phân là:
A. dy = (xcosx-sinx)dx
B. dy = (xcosx)dx
C. dy = (cosx-sinx)dx
D. dy = (xsinx)dx
Cho hàm số y=-x2+2x-3x-2. Đạo hàm y' của hàm số là biểu thức nào sau đây?
A. -1-3x-22
B. 1+3x-22
C. -1+3x-22
D. 1-3x-22
Tìm m để đồ thị hàm số y=x3-mx2+1 tiếp xúc với đường thẳng d: y = 5?
A. -3
B. 3
C. -1
D. 2
Tiếp tuyến kẻ từ điểm (2; 3) tới đồ thị hàm số y = 3x+4x-1 là
A. y = -28x+59; y = x+1
B. y = -24x+51; y = x+1
C. y = -28x+59
D. y = 28x+59; y = x+51